Text and Dynamic Network Analysis for Measuring Technological Convergence: A Case Study on Defense Patent Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A9ELSJ4SH" target="_blank" >RIV/00216208:11320/23:9ELSJ4SH - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107354845&doi=10.1109%2fTEM.2021.3078231&partnerID=40&md5=2d5e43efa12c7f7b2cff7be8bab260f9" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107354845&doi=10.1109%2fTEM.2021.3078231&partnerID=40&md5=2d5e43efa12c7f7b2cff7be8bab260f9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/tem.2021.3078231" target="_blank" >10.1109/tem.2021.3078231</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text and Dynamic Network Analysis for Measuring Technological Convergence: A Case Study on Defense Patent Data
Popis výsledku v původním jazyce
"Identifying technology convergence is getting harder, especially in fast-evolving and cross-technological fields. On the other side, natural language processing and network analysis researchers is to provide a novel method for mapping technologies and their relations over time, in order to identify dynamic patterns of convergence and to test it on the C4ISTAR field, a defense-related cross-technological field. The methodology automatically extracts technologies from a corpus of scientific papers, policy documents, websites, and company reports using Named Entity Recognition approaches. These technologies are then retrieved from the second corpus of more than 300 thousand patents related to the C4ISTAR domain, measuring their cooccurrences over time. Finally, using the time-varying network analysis, we were able to identify and measure the pattern of technological convergence. © 1988-2012 IEEE."
Název v anglickém jazyce
Text and Dynamic Network Analysis for Measuring Technological Convergence: A Case Study on Defense Patent Data
Popis výsledku anglicky
"Identifying technology convergence is getting harder, especially in fast-evolving and cross-technological fields. On the other side, natural language processing and network analysis researchers is to provide a novel method for mapping technologies and their relations over time, in order to identify dynamic patterns of convergence and to test it on the C4ISTAR field, a defense-related cross-technological field. The methodology automatically extracts technologies from a corpus of scientific papers, policy documents, websites, and company reports using Named Entity Recognition approaches. These technologies are then retrieved from the second corpus of more than 300 thousand patents related to the C4ISTAR domain, measuring their cooccurrences over time. Finally, using the time-varying network analysis, we were able to identify and measure the pattern of technological convergence. © 1988-2012 IEEE."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"IEEE Transactions on Engineering Management"
ISSN
0018-9391
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1490-1503
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85107354845