Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Curriculum-Style Fine-Grained Adaption for Unsupervised Cross-Lingual Dependency Transfer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ABJPD8TWC" target="_blank" >RIV/00216208:11320/23:BJPD8TWC - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144009133&doi=10.1109%2fTASLP.2022.3224302&partnerID=40&md5=c6aa01ea421e5a9756a064c117e34b9c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144009133&doi=10.1109%2fTASLP.2022.3224302&partnerID=40&md5=c6aa01ea421e5a9756a064c117e34b9c</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/taslp.2022.3224302" target="_blank" >10.1109/taslp.2022.3224302</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Curriculum-Style Fine-Grained Adaption for Unsupervised Cross-Lingual Dependency Transfer

  • Popis výsledku v původním jazyce

    "Unsupervised cross-lingual transfer has been shown great potentials for dependency parsing of the low-resource languages when there is no annotated treebank available. Recently, the self-training method has received increasing interests because of its state-of-the-art performance in this scenario. In this work, we advance the method further by coupling it with curriculum learning, which guides the self-training in an easy-to-hard manner. Concretely, we present a novel metric to measure the instance difficulty of a dependency parser which is trained mainly on a Treebank from a resource-rich source language. By using the metric, we divide a low-resource target language into several fine-grained sub-languages by their difficulties, and then apply iterative-self-training progressively on these sub-languages. To fully explore the auto-parsed training corpus from sub-languages, we exploit an improved parameter generation network to model the sub-languages for better representation learning. Experimental results show that our final curriculum-style self-training can outperform a range of strong baselines, leading to new state-of-the-art results on unsupervised cross-lingual dependency parsing. We also conduct detailed experimental analyses to examine the proposed approach in depth for comprehensive understandings. © 2014 IEEE."

  • Název v anglickém jazyce

    Curriculum-Style Fine-Grained Adaption for Unsupervised Cross-Lingual Dependency Transfer

  • Popis výsledku anglicky

    "Unsupervised cross-lingual transfer has been shown great potentials for dependency parsing of the low-resource languages when there is no annotated treebank available. Recently, the self-training method has received increasing interests because of its state-of-the-art performance in this scenario. In this work, we advance the method further by coupling it with curriculum learning, which guides the self-training in an easy-to-hard manner. Concretely, we present a novel metric to measure the instance difficulty of a dependency parser which is trained mainly on a Treebank from a resource-rich source language. By using the metric, we divide a low-resource target language into several fine-grained sub-languages by their difficulties, and then apply iterative-self-training progressively on these sub-languages. To fully explore the auto-parsed training corpus from sub-languages, we exploit an improved parameter generation network to model the sub-languages for better representation learning. Experimental results show that our final curriculum-style self-training can outperform a range of strong baselines, leading to new state-of-the-art results on unsupervised cross-lingual dependency parsing. We also conduct detailed experimental analyses to examine the proposed approach in depth for comprehensive understandings. © 2014 IEEE."

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "IEEE/ACM Transactions on Audio Speech and Language Processing"

  • ISSN

    2329-9290

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    322-332

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85144009133