A New Lightweight Script Independent Scene Text Style Transfer Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APNH243BZ" target="_blank" >RIV/00216208:11320/23:PNH243BZ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/abs/10.1142/S0218001423530038" target="_blank" >https://www.worldscientific.com/doi/abs/10.1142/S0218001423530038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218001423530038" target="_blank" >10.1142/S0218001423530038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A New Lightweight Script Independent Scene Text Style Transfer Network
Popis výsledku v původním jazyce
"Scene text style transfer without a language barrier is an open challenge for the video and scene text recognition community because this plays a vital role in poster, web design, augmenting character images, and editing characters to improve scene text recognition performance and usability. This work presents a new model, called Script Independent Scene Text Style Transfer Network (SISTSTNet), for extracting scene characters and transferring text style simultaneously. The SISTSTNet performs mapping in language-independent feature space for transferring style. It is designed based on a Style Parameter Network and Target Encoder Network through lightweight MobileNetv3 convolutional and residual blocks to capture the style and shape to generate target characters. Similarly, a generative model is explored through the Visual Geometry Group (VGG) network for character replacement. The SISTSTNet is flexible and works on different languages and arbitrary examples in a neat and unified fashion. The experimental results on images in various languages, namely, English, Chinese, Hindi, Russian, Japanese, Arabic, Greek, and Bengali and cross-language validation demonstrate the effectiveness of the proposed method. The performance of the method is superior compared to the state-of-the-art methods in terms of quality measures, language independence, shape-preserving, and efficiency. The code and dataset will be released to the public to support reproducibility."
Název v anglickém jazyce
A New Lightweight Script Independent Scene Text Style Transfer Network
Popis výsledku anglicky
"Scene text style transfer without a language barrier is an open challenge for the video and scene text recognition community because this plays a vital role in poster, web design, augmenting character images, and editing characters to improve scene text recognition performance and usability. This work presents a new model, called Script Independent Scene Text Style Transfer Network (SISTSTNet), for extracting scene characters and transferring text style simultaneously. The SISTSTNet performs mapping in language-independent feature space for transferring style. It is designed based on a Style Parameter Network and Target Encoder Network through lightweight MobileNetv3 convolutional and residual blocks to capture the style and shape to generate target characters. Similarly, a generative model is explored through the Visual Geometry Group (VGG) network for character replacement. The SISTSTNet is flexible and works on different languages and arbitrary examples in a neat and unified fashion. The experimental results on images in various languages, namely, English, Chinese, Hindi, Russian, Japanese, Arabic, Greek, and Bengali and cross-language validation demonstrate the effectiveness of the proposed method. The performance of the method is superior compared to the state-of-the-art methods in terms of quality measures, language independence, shape-preserving, and efficiency. The code and dataset will be released to the public to support reproducibility."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"International Journal of Pattern Recognition and Artificial Intelligence"
ISSN
0218-0014
e-ISSN
—
Svazek periodika
37
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
34
Strana od-do
1-34
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—