Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Machine Translation by Fusing Key Information of Text

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AUAAQZGWQ" target="_blank" >RIV/00216208:11320/23:UAAQZGWQ - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/summary/ebad957d-d255-4086-918c-399ee70f7265-bb92b50a/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/ebad957d-d255-4086-918c-399ee70f7265-bb92b50a/relevance/1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/cmc.2023.032732" target="_blank" >10.32604/cmc.2023.032732</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Machine Translation by Fusing Key Information of Text

  • Popis výsledku v původním jazyce

    "When the Transformer proposed by Google in 2017, it was first used for machine translation tasks and achieved the state of the art at that time. Although the current neural machine translation model can generate high quality translation results, there are still mistranslations and omissions in the translation of key information of long sentences. On the other hand, the most important part in traditional translation tasks is the translation of key information. In the translation results, as long as the key information is translated accurately and completely, even if other parts of the results are translated incorrect, the final translation results' quality can still be guaran-teed. In order to solve the problem of mistranslation and missed translation effectively, and improve the accuracy and completeness of long sentence translation in machine translation, this paper proposes a key information fused neural machine translation model based on Transformer. The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder. After the same encoding as the source language text, it is fused with the output of the source language text encoded by the encoder, then the key information is processed and input into the decoder. With incorporating keyword information from the source language sentence, the model's performance in the task of translating long sentences is very reliable. In order to verify the effectiveness of the method of fusion of key information proposed in this paper, a series of experiments were carried out on the verification set. The experimental results show that the Bilingual Evaluation Understudy (BLEU) score of the model proposed in this paper on the Workshop on Machine Translation (WMT) 2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset. The experimental results show the advantages of the model proposed in this paper."

  • Název v anglickém jazyce

    Neural Machine Translation by Fusing Key Information of Text

  • Popis výsledku anglicky

    "When the Transformer proposed by Google in 2017, it was first used for machine translation tasks and achieved the state of the art at that time. Although the current neural machine translation model can generate high quality translation results, there are still mistranslations and omissions in the translation of key information of long sentences. On the other hand, the most important part in traditional translation tasks is the translation of key information. In the translation results, as long as the key information is translated accurately and completely, even if other parts of the results are translated incorrect, the final translation results' quality can still be guaran-teed. In order to solve the problem of mistranslation and missed translation effectively, and improve the accuracy and completeness of long sentence translation in machine translation, this paper proposes a key information fused neural machine translation model based on Transformer. The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder. After the same encoding as the source language text, it is fused with the output of the source language text encoded by the encoder, then the key information is processed and input into the decoder. With incorporating keyword information from the source language sentence, the model's performance in the task of translating long sentences is very reliable. In order to verify the effectiveness of the method of fusion of key information proposed in this paper, a series of experiments were carried out on the verification set. The experimental results show that the Bilingual Evaluation Understudy (BLEU) score of the model proposed in this paper on the Workshop on Machine Translation (WMT) 2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset. The experimental results show the advantages of the model proposed in this paper."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "CMC-COMPUTERS MATERIALS & CONTINUA"

  • ISSN

    1546-2218

  • e-ISSN

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    2803-2815

  • Kód UT WoS článku

    000961024400029

  • EID výsledku v databázi Scopus