Translation Performance from the User's Perspective of Large Language Models and Neural Machine Translation Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AULBVJH3Z" target="_blank" >RIV/00216208:11320/23:ULBVJH3Z - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/info14100574" target="_blank" >10.3390/info14100574</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Translation Performance from the User's Perspective of Large Language Models and Neural Machine Translation Systems
Popis výsledku v původním jazyce
"The rapid global expansion of ChatGPT, which plays a crucial role in interactive knowledge sharing and translation, underscores the importance of comparative performance assessments in artificial intelligence (AI) technology. This study concentrated on this crucial issue by exploring and contrasting the translation performances of large language models (LLMs) and neural machine translation (NMT) systems. For this aim, the APIs of Google Translate, Microsoft Translator, and OpenAI's ChatGPT were utilized, leveraging parallel corpora from the Workshop on Machine Translation (WMT) 2018 and 2020 benchmarks. By applying recognized evaluation metrics such as BLEU, chrF, and TER, a comprehensive performance analysis across a variety of language pairs, translation directions, and reference token sizes was conducted. The findings reveal that while Google Translate and Microsoft Translator generally surpass ChatGPT in terms of their BLEU, chrF, and TER scores, ChatGPT exhibits superior performance in specific language pairs. Translations from non-English to English consistently yielded better results across all three systems compared with translations from English to non-English. Significantly, an improvement in translation system performance was observed as the token size increased, hinting at the potential benefits of training models on larger token sizes."
Název v anglickém jazyce
Translation Performance from the User's Perspective of Large Language Models and Neural Machine Translation Systems
Popis výsledku anglicky
"The rapid global expansion of ChatGPT, which plays a crucial role in interactive knowledge sharing and translation, underscores the importance of comparative performance assessments in artificial intelligence (AI) technology. This study concentrated on this crucial issue by exploring and contrasting the translation performances of large language models (LLMs) and neural machine translation (NMT) systems. For this aim, the APIs of Google Translate, Microsoft Translator, and OpenAI's ChatGPT were utilized, leveraging parallel corpora from the Workshop on Machine Translation (WMT) 2018 and 2020 benchmarks. By applying recognized evaluation metrics such as BLEU, chrF, and TER, a comprehensive performance analysis across a variety of language pairs, translation directions, and reference token sizes was conducted. The findings reveal that while Google Translate and Microsoft Translator generally surpass ChatGPT in terms of their BLEU, chrF, and TER scores, ChatGPT exhibits superior performance in specific language pairs. Translations from non-English to English consistently yielded better results across all three systems compared with translations from English to non-English. Significantly, an improvement in translation system performance was observed as the token size increased, hinting at the potential benefits of training models on larger token sizes."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"INFORMATION"
ISSN
2078-2489
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
574-591
Kód UT WoS článku
001090032700001
EID výsledku v databázi Scopus
—