Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Syntax-aware data augmentation for neural machine translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AWKKPAJAI" target="_blank" >RIV/00216208:11320/23:WKKPAJAI - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/10202198/" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10202198/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TASLP.2023.3301214" target="_blank" >10.1109/TASLP.2023.3301214</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Syntax-aware data augmentation for neural machine translation

  • Popis výsledku v původním jazyce

    "Data augmentation is an effective method for the performance enhancement of neural machine translation (NMT) by generating additional bilingual data. In this article, we propose a novel data augmentation strategy for neural machine translation. Unlike existing data augmentation methods that simply modify words with the same probability across different sentences, we introduce a sentence-specific probability approach for word selection based on the syntactic roles of words in the sentence. Our motivation is to consider a linguistics-motivated method to obtain more ingenious language generation rather than relying on computation-motivated approaches only. We argue that high-quality aligned bilingual data is crucial for NMT, and only computation-motivated data augmentation is insufficient to provide good enough extra enhancement data. Our approach leverages dependency parse trees of input sentences to determine the selection probability of each word in the sentence using three different functions to calculate probabilities for words with different depths. Besides, our method also revises the probability for words considering the sentence length. We evaluate our methods on multiple translation tasks. The experimental results demonstrate that our proposed data augmentation method does effectively boost existing sentence-independent methods for significant improvement of performance on translation tasks. Furthermore, an ablation study shows that our method does select fewer essential words and preserves the syntactic structure."

  • Název v anglickém jazyce

    Syntax-aware data augmentation for neural machine translation

  • Popis výsledku anglicky

    "Data augmentation is an effective method for the performance enhancement of neural machine translation (NMT) by generating additional bilingual data. In this article, we propose a novel data augmentation strategy for neural machine translation. Unlike existing data augmentation methods that simply modify words with the same probability across different sentences, we introduce a sentence-specific probability approach for word selection based on the syntactic roles of words in the sentence. Our motivation is to consider a linguistics-motivated method to obtain more ingenious language generation rather than relying on computation-motivated approaches only. We argue that high-quality aligned bilingual data is crucial for NMT, and only computation-motivated data augmentation is insufficient to provide good enough extra enhancement data. Our approach leverages dependency parse trees of input sentences to determine the selection probability of each word in the sentence using three different functions to calculate probabilities for words with different depths. Besides, our method also revises the probability for words considering the sentence length. We evaluate our methods on multiple translation tasks. The experimental results demonstrate that our proposed data augmentation method does effectively boost existing sentence-independent methods for significant improvement of performance on translation tasks. Furthermore, an ablation study shows that our method does select fewer essential words and preserves the syntactic structure."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "IEEE/ACM Transactions on Audio, Speech, and Language Processing"

  • ISSN

    2329-9290

  • e-ISSN

  • Svazek periodika

    ""

  • Číslo periodika v rámci svazku

    2023-3-16

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2988 - 2999

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus