Estimating word-level quality of statistical machine translation output using monolingual information alone
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426930" target="_blank" >RIV/00216208:11320/20:10426930 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326" target="_blank" >https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating word-level quality of statistical machine translation output using monolingual information alone
Popis výsledku v původním jazyce
Various studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.
Název v anglickém jazyce
Estimating word-level quality of statistical machine translation output using monolingual information alone
Popis výsledku anglicky
Various studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů