Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimating word-level quality of statistical machine translation output using monolingual information alone

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10426930" target="_blank" >RIV/00216208:11320/20:10426930 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326" target="_blank" >https://www.cambridge.org/core/journals/natural-language-engineering/article/estimating-wordlevel-quality-of-statistical-machine-translation-output-using-monolingual-information-alone/CC59FF0C07E859AAA01CC30CF7BA9326</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimating word-level quality of statistical machine translation output using monolingual information alone

  • Popis výsledku v původním jazyce

    Various studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.

  • Název v anglickém jazyce

    Estimating word-level quality of statistical machine translation output using monolingual information alone

  • Popis výsledku anglicky

    Various studies show that statistical machine translation (SMT) systems suffer from fluency errors, especially in the form of grammatical errors and errors related to idiomatic word choices. In this study, we investigate the effectiveness of using monolingual information contained in the machine-translated text to estimate word-level quality of SMT output. We propose a recurrent neural network architecture which uses morpho-syntactic features and word embeddings as word representations within surface and syntactic n-grams. We test the proposed method on two language pairs and for two tasks, namely detecting fluency errors and predicting overall post-editing effort. Our results show that this method is effective for capturing all types of fluency errors at once. Moreover, on the task of predicting post-editing effort, while solely relying on monolingual information, it achieves on-par results with the state-of-the-art quality estimation systems which use both bilingual and monolingual information.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů