Global weak solutions to a 3D/3D fluid-structure interaction problem including possible contacts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10475601" target="_blank" >RIV/00216208:11320/24:10475601 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~cPaqeRb27" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~cPaqeRb27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.12.014" target="_blank" >10.1016/j.jde.2023.12.014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Global weak solutions to a 3D/3D fluid-structure interaction problem including possible contacts
Popis výsledku v původním jazyce
In this paper, we study an interaction problem between a 3D compressible viscous fluid and a 3D nonlinear viscoelastic solid fully immersed in the fluid, coupled together on the interface surface. The solid is allowed to have self-contact or contact with the rigid boundary of the fluid container. For this problem, a global weak solution with defect measure is constructed by using a multi-layered approximation scheme which decouples the body and the fluid by penalizing the fluid velocity and allowing the fluid to pass through the body, while the body is supplemented with a contact-penalization term. The resulting defect measure is a consequence of pressure concentrations that can appear where the fluid meets the (generally irregular) points of self-contact of the solid. Moreover, we study some geometrical properties of the fluid-structure interface and the contact surface. In particular, we prove a lower bound on area of the interface.
Název v anglickém jazyce
Global weak solutions to a 3D/3D fluid-structure interaction problem including possible contacts
Popis výsledku anglicky
In this paper, we study an interaction problem between a 3D compressible viscous fluid and a 3D nonlinear viscoelastic solid fully immersed in the fluid, coupled together on the interface surface. The solid is allowed to have self-contact or contact with the rigid boundary of the fluid container. For this problem, a global weak solution with defect measure is constructed by using a multi-layered approximation scheme which decouples the body and the fluid by penalizing the fluid velocity and allowing the fluid to pass through the body, while the body is supplemented with a contact-penalization term. The resulting defect measure is a consequence of pressure concentrations that can appear where the fluid meets the (generally irregular) points of self-contact of the solid. Moreover, we study some geometrical properties of the fluid-structure interface and the contact surface. In particular, we prove a lower bound on area of the interface.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
385
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
280-324
Kód UT WoS článku
001165870500001
EID výsledku v databázi Scopus
2-s2.0-85181100958