Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10476934" target="_blank" >RIV/00216208:11320/24:10476934 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q9-n3itrf0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Q9-n3itrf0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00205-023-01944-y" target="_blank" >10.1007/s00205-023-01944-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow

  • Popis výsledku v původním jazyce

    We consider the flat flowsolution, obtained via a discreteminimizingmovement scheme, to the volume preserving mean curvature flow starting from C(1,)1-regular set. We prove the consistency principle, which states that (any) flat flow solution agrees with the classical solution as long as the latter exists. In particular the flat flow solution is unique and smooth up to the first singular time. We obtain the result by proving the full regularity for the discrete time approximation of the flat flow such that the regularity estimates are stable with respect to the time discretization. Our method can also be applied in the case of the mean curvature flow and thus it provides an alternative proof, not relying on comparison principle, for the consistency between the flat flow solution and the classical solution for C-1,C-1-regular initial sets.

  • Název v anglickém jazyce

    Consistency of the Flat Flow Solution to the Volume Preserving Mean Curvature Flow

  • Popis výsledku anglicky

    We consider the flat flowsolution, obtained via a discreteminimizingmovement scheme, to the volume preserving mean curvature flow starting from C(1,)1-regular set. We prove the consistency principle, which states that (any) flat flow solution agrees with the classical solution as long as the latter exists. In particular the flat flow solution is unique and smooth up to the first singular time. We obtain the result by proving the full regularity for the discrete time approximation of the flat flow such that the regularity estimates are stable with respect to the time discretization. Our method can also be applied in the case of the mean curvature flow and thus it provides an alternative proof, not relying on comparison principle, for the consistency between the flat flow solution and the classical solution for C-1,C-1-regular initial sets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Archive for Rational Mechanics and Analysis

  • ISSN

    0003-9527

  • e-ISSN

    1432-0673

  • Svazek periodika

    248

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    58

  • Strana od-do

    1

  • Kód UT WoS článku

    001117814000001

  • EID výsledku v databázi Scopus

    2-s2.0-85178911021