Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489298" target="_blank" >RIV/00216208:11320/24:10489298 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BWjNV-ooJe" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BWjNV-ooJe</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/gmd-17-6489-2024" target="_blank" >10.5194/gmd-17-6489-2024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Popis výsledku v původním jazyce
Forecast error growth as a function of lead time of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. The question under investigation is whether omitting these atmospheric phenomena will improve the predictability of the resulting value. The topic is studied in the extended Lorenz (2005) system. This system shows that omitting small spatiotemporal scales that significantly affect prediction ability will reduce predictability more than modeling it. In other words, a system with model error (omitting phenomena) will not improve predictability. A hypothesis explaining and describing this behavior is developed, with the difference between systems (model error) produced at each time step seen as the error of the initial conditions. The resulting model error is then defined as the sum of the increments of the time evolution of the initial conditions so defined. The hypothesis is compared to the fit parameters that define the model error in certain approximations of the average forecast error growth. Parameters are interpreted in this context, and the approximations are used to estimate the errors described in the hypothesis. A method is proposed to distinguish increments of prediction error growth from small-spatiotemporal-scale phenomena and model errors. Results are presented for the error growth of the ECMWF system, where a 40 % reduction in model error between 1987 and 2011 is calculated based on the developed hypothesis, while over the same period the instability (error growth rate) of the system with respect to initial condition errors has grown.
Název v anglickém jazyce
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Popis výsledku anglicky
Forecast error growth as a function of lead time of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. The question under investigation is whether omitting these atmospheric phenomena will improve the predictability of the resulting value. The topic is studied in the extended Lorenz (2005) system. This system shows that omitting small spatiotemporal scales that significantly affect prediction ability will reduce predictability more than modeling it. In other words, a system with model error (omitting phenomena) will not improve predictability. A hypothesis explaining and describing this behavior is developed, with the difference between systems (model error) produced at each time step seen as the error of the initial conditions. The resulting model error is then defined as the sum of the increments of the time evolution of the initial conditions so defined. The hypothesis is compared to the fit parameters that define the model error in certain approximations of the average forecast error growth. Parameters are interpreted in this context, and the approximations are used to estimate the errors described in the hypothesis. A method is proposed to distinguish increments of prediction error growth from small-spatiotemporal-scale phenomena and model errors. Results are presented for the error growth of the ECMWF system, where a 40 % reduction in model error between 1987 and 2011 is calculated based on the developed hypothesis, while over the same period the instability (error growth rate) of the system with respect to initial condition errors has grown.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoscientific Model Development
ISSN
1991-959X
e-ISSN
1991-9603
Svazek periodika
17
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
6489-6511
Kód UT WoS článku
001302082400001
EID výsledku v databázi Scopus
2-s2.0-85202948587