Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

List Covering of Regular Multigraphs with Semi-edges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489534" target="_blank" >RIV/00216208:11320/24:10489534 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kbKCJQP0Kv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kbKCJQP0Kv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00453-023-01163-7" target="_blank" >10.1007/s00453-023-01163-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    List Covering of Regular Multigraphs with Semi-edges

  • Popis výsledku v původním jazyce

    In line with the recent development in topological graph theory, we are considering undirected graphs that are allowed to contain multiple edges, loops, and semi-edges. A graph is called simple if it contains no semi-edges, no loops, and no multiple edges. A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidences and which is a local bijection on the edge-neighborhood of every vertex. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph H of valency greater than 2, deciding if an input graph covers H is NP-complete. Graphs with semi-edges have been considered in this context only recently and only partial results on the complexity of covering such graphs are known so far. In this paper we consider the list version of the problem, called List-H-Cover, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the List-H-Cover problem is NP-complete for every regular graph H of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we show the NP-co/polytime dichotomy for the computational complexity of List-H-Cover for cubic graphs.

  • Název v anglickém jazyce

    List Covering of Regular Multigraphs with Semi-edges

  • Popis výsledku anglicky

    In line with the recent development in topological graph theory, we are considering undirected graphs that are allowed to contain multiple edges, loops, and semi-edges. A graph is called simple if it contains no semi-edges, no loops, and no multiple edges. A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidences and which is a local bijection on the edge-neighborhood of every vertex. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph H of valency greater than 2, deciding if an input graph covers H is NP-complete. Graphs with semi-edges have been considered in this context only recently and only partial results on the complexity of covering such graphs are known so far. In this paper we consider the list version of the problem, called List-H-Cover, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the List-H-Cover problem is NP-complete for every regular graph H of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we show the NP-co/polytime dichotomy for the computational complexity of List-H-Cover for cubic graphs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-15576S" target="_blank" >GA20-15576S: Nakrývání grafů: Symetrie a složitost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algorithmica

  • ISSN

    0178-4617

  • e-ISSN

    1432-0541

  • Svazek periodika

    86

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    782-807

  • Kód UT WoS článku

    001118644500001

  • EID výsledku v databázi Scopus

    2-s2.0-85168939540