List Covering of Regular Multigraphs with Semi-edges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489534" target="_blank" >RIV/00216208:11320/24:10489534 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kbKCJQP0Kv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=kbKCJQP0Kv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-023-01163-7" target="_blank" >10.1007/s00453-023-01163-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
List Covering of Regular Multigraphs with Semi-edges
Popis výsledku v původním jazyce
In line with the recent development in topological graph theory, we are considering undirected graphs that are allowed to contain multiple edges, loops, and semi-edges. A graph is called simple if it contains no semi-edges, no loops, and no multiple edges. A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidences and which is a local bijection on the edge-neighborhood of every vertex. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph H of valency greater than 2, deciding if an input graph covers H is NP-complete. Graphs with semi-edges have been considered in this context only recently and only partial results on the complexity of covering such graphs are known so far. In this paper we consider the list version of the problem, called List-H-Cover, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the List-H-Cover problem is NP-complete for every regular graph H of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we show the NP-co/polytime dichotomy for the computational complexity of List-H-Cover for cubic graphs.
Název v anglickém jazyce
List Covering of Regular Multigraphs with Semi-edges
Popis výsledku anglicky
In line with the recent development in topological graph theory, we are considering undirected graphs that are allowed to contain multiple edges, loops, and semi-edges. A graph is called simple if it contains no semi-edges, no loops, and no multiple edges. A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidences and which is a local bijection on the edge-neighborhood of every vertex. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph H of valency greater than 2, deciding if an input graph covers H is NP-complete. Graphs with semi-edges have been considered in this context only recently and only partial results on the complexity of covering such graphs are known so far. In this paper we consider the list version of the problem, called List-H-Cover, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the List-H-Cover problem is NP-complete for every regular graph H of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we show the NP-co/polytime dichotomy for the computational complexity of List-H-Cover for cubic graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-15576S" target="_blank" >GA20-15576S: Nakrývání grafů: Symetrie a složitost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
1432-0541
Svazek periodika
86
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
782-807
Kód UT WoS článku
001118644500001
EID výsledku v databázi Scopus
2-s2.0-85168939540