Emoji driven crypto assets market reactions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489891" target="_blank" >RIV/00216208:11320/24:10489891 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=0RaFeUrV8V</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/mmcks-2024-0008" target="_blank" >10.2478/mmcks-2024-0008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Emoji driven crypto assets market reactions
Popis výsledku v původním jazyce
In the burgeoning realm of cryptocurrency, social media platforms like Twitter have become pivotal in influencing market trends and investor sentiments. In our study, we leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis, focusing on the impact of emoji sentiment on cryptocurrency markets. By translating emojis into quantifiable sentiment data, we correlate these insights with key market indicators such as BTC Price and the VCRIX index. Our architecture's analysis of emoji sentiment demonstrated a distinct advantage over FinBERT's pure text sentiment analysis in such predicting power. This approach may be fed into the development of trading strategies aimed at utilizing social media elements to identify and forecast market trends. Crucially, our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns and contribute to the stabilization of returns. This research underscores the practical benefits of integrating advanced AI-driven analyzes into financial strategies, offering a nuanced perspective on the interaction between digital communication and market dynamics in an academic context.
Název v anglickém jazyce
Emoji driven crypto assets market reactions
Popis výsledku anglicky
In the burgeoning realm of cryptocurrency, social media platforms like Twitter have become pivotal in influencing market trends and investor sentiments. In our study, we leverage GPT-4 and a fine-tuned transformer-based BERT model for a multimodal sentiment analysis, focusing on the impact of emoji sentiment on cryptocurrency markets. By translating emojis into quantifiable sentiment data, we correlate these insights with key market indicators such as BTC Price and the VCRIX index. Our architecture's analysis of emoji sentiment demonstrated a distinct advantage over FinBERT's pure text sentiment analysis in such predicting power. This approach may be fed into the development of trading strategies aimed at utilizing social media elements to identify and forecast market trends. Crucially, our findings suggest that strategies based on emoji sentiment can facilitate the avoidance of significant market downturns and contribute to the stabilization of returns. This research underscores the practical benefits of integrating advanced AI-driven analyzes into financial strategies, offering a nuanced perspective on the interaction between digital communication and market dynamics in an academic context.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28231X" target="_blank" >GX19-28231X: Dynamické modely pro digitální finance</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Management & Marketing
ISSN
1842-0206
e-ISSN
2069-8887
Svazek periodika
19
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
21
Strana od-do
158-178
Kód UT WoS článku
001270048700002
EID výsledku v databázi Scopus
2-s2.0-85198981994