Coupling the Navier-Stokes-Fourier equations with the Johnson-Segalman stress-diffusive viscoelastic model: Global-in-time and large-data analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490284" target="_blank" >RIV/00216208:11320/24:10490284 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zjc9bdFrqj" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Zjc9bdFrqj</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202524500064" target="_blank" >10.1142/S0218202524500064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupling the Navier-Stokes-Fourier equations with the Johnson-Segalman stress-diffusive viscoelastic model: Global-in-time and large-data analysis
Popis výsledku v původním jazyce
We prove that there exists a large-data and global-in-time weak solution to a system of partial differential equations describing the unsteady flow of an incompressible heat-conducting rate-type viscoelastic stress-diffusive fluid filling up a mechanically and thermally isolated container of any dimension. To overcome the principal difficulties connected with ill-posedness of the diffusive Oldroyd-B model in three dimensions, we assume that the fluid admits a strengthened dissipation mechanism, at least for excessive elastic deformations. All the relevant material coefficients are allowed to depend continuously on the temperature, whose evolution is captured by a thermodynamically consistent equation. In fact, the studied model is derived from scratch using only the balance equations for linear momentum and energy, the formulation of the second law of thermodynamics and the constitutive equation for the internal energy. The latter is assumed to be a linear function of temperature, which simplifies the model. The concept of our weak solution incorporates both the temperature and entropy inequalities, and also the local balance of total energy provided that the pressure function exists.
Název v anglickém jazyce
Coupling the Navier-Stokes-Fourier equations with the Johnson-Segalman stress-diffusive viscoelastic model: Global-in-time and large-data analysis
Popis výsledku anglicky
We prove that there exists a large-data and global-in-time weak solution to a system of partial differential equations describing the unsteady flow of an incompressible heat-conducting rate-type viscoelastic stress-diffusive fluid filling up a mechanically and thermally isolated container of any dimension. To overcome the principal difficulties connected with ill-posedness of the diffusive Oldroyd-B model in three dimensions, we assume that the fluid admits a strengthened dissipation mechanism, at least for excessive elastic deformations. All the relevant material coefficients are allowed to depend continuously on the temperature, whose evolution is captured by a thermodynamically consistent equation. In fact, the studied model is derived from scratch using only the balance equations for linear momentum and energy, the formulation of the second law of thermodynamics and the constitutive equation for the internal energy. The latter is assumed to be a linear function of temperature, which simplifies the model. The concept of our weak solution incorporates both the temperature and entropy inequalities, and also the local balance of total energy provided that the pressure function exists.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-11027X" target="_blank" >GX20-11027X: Matematická analýza parciálních diferenciálních rovnic popisujících silně nerovnovážné stavy v otevřených systémech termodynamiky kontinua</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Svazek periodika
34
Číslo periodika v rámci svazku
03
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
60
Strana od-do
417-476
Kód UT WoS článku
001146302500001
EID výsledku v databázi Scopus
2-s2.0-85183532393