Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BOUNDING AND COMPUTING OBSTACLE NUMBERS OF GRAPHS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490824" target="_blank" >RIV/00216208:11320/24:10490824 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iYnpDEu_zj" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=iYnpDEu_zj</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/23M1585088" target="_blank" >10.1137/23M1585088</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BOUNDING AND COMPUTING OBSTACLE NUMBERS OF GRAPHS

  • Popis výsledku v původním jazyce

    An obstacle representation of a graph G consists of a set of pairwise disjoint simply connected closed regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent in G if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each n - vertex graph is O ( n log n ) [M. Balko, J. Cibulka, and P. Valtr, Discrete Comput. Geom ., 59 (2018), pp. 143--164] and that there are n - vertex graphs whose obstacle number is Cl( n/ (log log n ) 2 ) [V. Dujmovic&apos; and P. Morin, Electron. J. Combin ., 22 (2015), 3.1]. We improve this lower bound to Cl( n/ log log n ) for simple polygons and to Cl( n ) for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of n - vertex graphs with bounded obstacle number, solving a conjecture by Dujmovic&apos; and Morin. We also show that if the drawing of some n - vertex graph is given as part of the input, then for some drawings Cl( n 2 ) obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph G is fixed -parameter tractable in the vertex cover number of G. Second, we show that, given a graph G and a simple polygon P, it is NP -hard to decide whether G admits an obstacle representation using P as the only obstacle.

  • Název v anglickém jazyce

    BOUNDING AND COMPUTING OBSTACLE NUMBERS OF GRAPHS

  • Popis výsledku anglicky

    An obstacle representation of a graph G consists of a set of pairwise disjoint simply connected closed regions and a one-to-one mapping of the vertices of G to points such that two vertices are adjacent in G if and only if the line segment connecting the two corresponding points does not intersect any obstacle. The obstacle number of a graph is the smallest number of obstacles in an obstacle representation of the graph in the plane such that all obstacles are simple polygons. It is known that the obstacle number of each n - vertex graph is O ( n log n ) [M. Balko, J. Cibulka, and P. Valtr, Discrete Comput. Geom ., 59 (2018), pp. 143--164] and that there are n - vertex graphs whose obstacle number is Cl( n/ (log log n ) 2 ) [V. Dujmovic&apos; and P. Morin, Electron. J. Combin ., 22 (2015), 3.1]. We improve this lower bound to Cl( n/ log log n ) for simple polygons and to Cl( n ) for convex polygons. To obtain these stronger bounds, we improve known estimates on the number of n - vertex graphs with bounded obstacle number, solving a conjecture by Dujmovic&apos; and Morin. We also show that if the drawing of some n - vertex graph is given as part of the input, then for some drawings Cl( n 2 ) obstacles are required to turn them into an obstacle representation of the graph. Our bounds are asymptotically tight in several instances. We complement these combinatorial bounds by two complexity results. First, we show that computing the obstacle number of a graph G is fixed -parameter tractable in the vertex cover number of G. Second, we show that, given a graph G and a simple polygon P, it is NP -hard to decide whether G admits an obstacle representation using P as the only obstacle.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-32817S" target="_blank" >GA21-32817S: Algoritmické, strukturální a složitostní aspekty geometrických konfigurací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Discrete Mathematics

  • ISSN

    0895-4801

  • e-ISSN

    1095-7146

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    1537-1565

  • Kód UT WoS článku

    001232147900004

  • EID výsledku v databázi Scopus

    2-s2.0-85195195630