On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492731" target="_blank" >RIV/00216208:11320/24:10492731 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x.D22UrU_P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=x.D22UrU_P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2023.127976" target="_blank" >10.1016/j.jmaa.2023.127976</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
Popis výsledku v původním jazyce
Our paper is a complement to a recent article by D. Azagra and C. Mudarra (2021, [2]). We show how older results on semiconvex functions with modulus omega easily imply extension theorems for C1,omega-smooth functions on super-reflexive Banach spaces which are versions of some theorems of Azagra and Mudarra. We present also some new interesting consequences which are not mentioned in their article, in particular extensions of C1,omega-smooth functions from open quasiconvex sets. They proved also an extension theorem for C1,+ B-smooth functions (i.e., functions with uniformly continuous derivative on each bounded set) on Hilbert spaces. Our version of this theorem and new extension results for C1,+ and C1,+ loc-smooth functions (i.e., functions with uniformly, resp. locally uniformly continuous derivative), all of which are proved on arbitrary super-reflexive Banach spaces, are further main contributions of our paper. Some of our proofs use main ideas of the article by D. Azagra and C. Mudarra, but all are formally completely independent on their article. (c) 2023 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
On Whitney-type extension theorems on Banach spaces for C1,ω,C1,+, C1,+ loc , and C1,+ B-smooth functions
Popis výsledku anglicky
Our paper is a complement to a recent article by D. Azagra and C. Mudarra (2021, [2]). We show how older results on semiconvex functions with modulus omega easily imply extension theorems for C1,omega-smooth functions on super-reflexive Banach spaces which are versions of some theorems of Azagra and Mudarra. We present also some new interesting consequences which are not mentioned in their article, in particular extensions of C1,omega-smooth functions from open quasiconvex sets. They proved also an extension theorem for C1,+ B-smooth functions (i.e., functions with uniformly continuous derivative on each bounded set) on Hilbert spaces. Our version of this theorem and new extension results for C1,+ and C1,+ loc-smooth functions (i.e., functions with uniformly, resp. locally uniformly continuous derivative), all of which are proved on arbitrary super-reflexive Banach spaces, are further main contributions of our paper. Some of our proofs use main ideas of the article by D. Azagra and C. Mudarra, but all are formally completely independent on their article. (c) 2023 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
532
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
127976
Kód UT WoS článku
001125488400001
EID výsledku v databázi Scopus
2-s2.0-85177999921