Compressible fluids interacting with 3D visco-elastic bulk solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492982" target="_blank" >RIV/00216208:11320/24:10492982 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ILZCNgTrD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_ILZCNgTrD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00208-024-02886-w" target="_blank" >10.1007/s00208-024-02886-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compressible fluids interacting with 3D visco-elastic bulk solids
Popis výsledku v původním jazyce
We consider the physical setup of a three-dimensional fluid-structure interaction problem. A viscous compressible gas or liquid interacts with a nonlinear, visco-elastic, three-dimensional bulk solid. The latter is described by an evolution with inertia, a non-linear dissipation term and a term that relates to a non-convex elastic energy functional. The fluid is modelled by the compressible Navier-Stokes equations with a barotropic pressure law. Due to the motion of the solid, the fluid domain is time-changing. Our main result is the long-time existence of a weak solution to the coupled system until the time of a collision. The nonlinear coupling between the motions of the two different matters is established via the method of minimising movements. The motion of both the solid and the fluid is chosen via an incrimental minimization with respect to dissipative and static potentials. These variational choices together with a careful construction of an underlying flow map for our approximation then directly result in the pressure gradient and the material time derivatives.
Název v anglickém jazyce
Compressible fluids interacting with 3D visco-elastic bulk solids
Popis výsledku anglicky
We consider the physical setup of a three-dimensional fluid-structure interaction problem. A viscous compressible gas or liquid interacts with a nonlinear, visco-elastic, three-dimensional bulk solid. The latter is described by an evolution with inertia, a non-linear dissipation term and a term that relates to a non-convex elastic energy functional. The fluid is modelled by the compressible Navier-Stokes equations with a barotropic pressure law. Due to the motion of the solid, the fluid domain is time-changing. Our main result is the long-time existence of a weak solution to the coupled system until the time of a collision. The nonlinear coupling between the motions of the two different matters is established via the method of minimising movements. The motion of both the solid and the fluid is chosen via an incrimental minimization with respect to dissipative and static potentials. These variational choices together with a careful construction of an underlying flow map for our approximation then directly result in the pressure gradient and the material time derivatives.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematische Annalen
ISSN
0025-5831
e-ISSN
1432-1807
Svazek periodika
390
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
58
Strana od-do
5495-5552
Kód UT WoS článku
001222362500001
EID výsledku v databázi Scopus
2-s2.0-85192984295