The Hierarchy of Hereditary Sorting Operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493170" target="_blank" >RIV/00216208:11320/24:10493170 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/24:00374777
Výsledek na webu
<a href="https://doi.org/10.1137/1.9781611977912.59" target="_blank" >https://doi.org/10.1137/1.9781611977912.59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/1.9781611977912.59" target="_blank" >10.1137/1.9781611977912.59</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Hierarchy of Hereditary Sorting Operators
Popis výsledku v původním jazyce
We consider the following general model of a sorting procedure: we fix a hereditary permutation class C, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation pi of the set [n] = {1, 2, ...,, n} i.e., a sequence where each element of [n] appears once. In every step, the sorting procedure picks a permutation sigma of length n from C, and rearranges the current permutation of numbers by composing it with sigma. The goal is to transform the input pi into the sorted sequence 1, 2, ..., n in as few steps as possible. Formally, for a hereditary permutation class C and a permutation pi of [n], we say that C can sort pi in k steps, if the inverse of pi can be obtained by composing k (not necessarily distinct) permutations from C. The C-sorting time of pi, denoted st (C; pi), is the smallest k such that C can sort pi in k steps; if no such k exists, we put st (C; pi) = +infinity. For an integer n, the worst-case C-sorting time, denoted wst (C; n), is the maximum of st (C; pi over all permutations pi of [n]. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the function wst (C; n), and relate it to structural properties of C. As the main result, we show that any hereditary permutation class C falls into one of the following five categories: wst (C; n) = + infinity for n large enough, wst (C; n) = Theta(n(2)), Omega(root n) <= wst (C; n) <= O(n), Omega(log n) <= wst (C; n) <= O(log(2) n), or wst C; n) = 1 for all n >= 2. In addition, we characterize the permutation classes in each of the five categories.
Název v anglickém jazyce
The Hierarchy of Hereditary Sorting Operators
Popis výsledku anglicky
We consider the following general model of a sorting procedure: we fix a hereditary permutation class C, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation pi of the set [n] = {1, 2, ...,, n} i.e., a sequence where each element of [n] appears once. In every step, the sorting procedure picks a permutation sigma of length n from C, and rearranges the current permutation of numbers by composing it with sigma. The goal is to transform the input pi into the sorted sequence 1, 2, ..., n in as few steps as possible. Formally, for a hereditary permutation class C and a permutation pi of [n], we say that C can sort pi in k steps, if the inverse of pi can be obtained by composing k (not necessarily distinct) permutations from C. The C-sorting time of pi, denoted st (C; pi), is the smallest k such that C can sort pi in k steps; if no such k exists, we put st (C; pi) = +infinity. For an integer n, the worst-case C-sorting time, denoted wst (C; n), is the maximum of st (C; pi over all permutations pi of [n]. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the function wst (C; n), and relate it to structural properties of C. As the main result, we show that any hereditary permutation class C falls into one of the following five categories: wst (C; n) = + infinity for n large enough, wst (C; n) = Theta(n(2)), Omega(root n) <= wst (C; n) <= O(n), Omega(log n) <= wst (C; n) <= O(log(2) n), or wst C; n) = 1 for all n >= 2. In addition, we characterize the permutation classes in each of the five categories.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA
ISBN
978-1-61197-791-2
ISSN
—
e-ISSN
—
Počet stran výsledku
18
Strana od-do
1447-1464
Název nakladatele
SIAM
Místo vydání
PHILADELPHIA
Místo konání akce
Alexandria
Datum konání akce
7. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001267398704004