Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Hierarchy of Hereditary Sorting Operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493170" target="_blank" >RIV/00216208:11320/24:10493170 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00374777

  • Výsledek na webu

    <a href="https://doi.org/10.1137/1.9781611977912.59" target="_blank" >https://doi.org/10.1137/1.9781611977912.59</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/1.9781611977912.59" target="_blank" >10.1137/1.9781611977912.59</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Hierarchy of Hereditary Sorting Operators

  • Popis výsledku v původním jazyce

    We consider the following general model of a sorting procedure: we fix a hereditary permutation class C, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation pi of the set [n] = {1, 2, ...,, n} i.e., a sequence where each element of [n] appears once. In every step, the sorting procedure picks a permutation sigma of length n from C, and rearranges the current permutation of numbers by composing it with sigma. The goal is to transform the input pi into the sorted sequence 1, 2, ..., n in as few steps as possible. Formally, for a hereditary permutation class C and a permutation pi of [n], we say that C can sort pi in k steps, if the inverse of pi can be obtained by composing k (not necessarily distinct) permutations from C. The C-sorting time of pi, denoted st (C; pi), is the smallest k such that C can sort pi in k steps; if no such k exists, we put st (C; pi) = +infinity. For an integer n, the worst-case C-sorting time, denoted wst (C; n), is the maximum of st (C; pi over all permutations pi of [n]. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the function wst (C; n), and relate it to structural properties of C. As the main result, we show that any hereditary permutation class C falls into one of the following five categories: wst (C; n) = + infinity for n large enough, wst (C; n) = Theta(n(2)), Omega(root n) &lt;= wst (C; n) &lt;= O(n), Omega(log n) &lt;= wst (C; n) &lt;= O(log(2) n), or wst C; n) = 1 for all n &gt;= 2. In addition, we characterize the permutation classes in each of the five categories.

  • Název v anglickém jazyce

    The Hierarchy of Hereditary Sorting Operators

  • Popis výsledku anglicky

    We consider the following general model of a sorting procedure: we fix a hereditary permutation class C, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation pi of the set [n] = {1, 2, ...,, n} i.e., a sequence where each element of [n] appears once. In every step, the sorting procedure picks a permutation sigma of length n from C, and rearranges the current permutation of numbers by composing it with sigma. The goal is to transform the input pi into the sorted sequence 1, 2, ..., n in as few steps as possible. Formally, for a hereditary permutation class C and a permutation pi of [n], we say that C can sort pi in k steps, if the inverse of pi can be obtained by composing k (not necessarily distinct) permutations from C. The C-sorting time of pi, denoted st (C; pi), is the smallest k such that C can sort pi in k steps; if no such k exists, we put st (C; pi) = +infinity. For an integer n, the worst-case C-sorting time, denoted wst (C; n), is the maximum of st (C; pi over all permutations pi of [n]. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the function wst (C; n), and relate it to structural properties of C. As the main result, we show that any hereditary permutation class C falls into one of the following five categories: wst (C; n) = + infinity for n large enough, wst (C; n) = Theta(n(2)), Omega(root n) &lt;= wst (C; n) &lt;= O(n), Omega(log n) &lt;= wst (C; n) &lt;= O(log(2) n), or wst C; n) = 1 for all n &gt;= 2. In addition, we characterize the permutation classes in each of the five categories.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA

  • ISBN

    978-1-61197-791-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    18

  • Strana od-do

    1447-1464

  • Název nakladatele

    SIAM

  • Místo vydání

    PHILADELPHIA

  • Místo konání akce

    Alexandria

  • Datum konání akce

    7. 1. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001267398704004