Bisimplicial separators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493537" target="_blank" >RIV/00216208:11320/24:10493537 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gzI4DpW42T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gzI4DpW42T</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.23098" target="_blank" >10.1002/jgt.23098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bisimplicial separators
Popis výsledku v původním jazyce
A minimal separator of a graph G is a set S subset of V (G) such that there exist vertices a, b is an element of V (G)S with the property that S separates a from b in G, but no proper subset of S does. For an integer k >= 0, we say that a minimal separator is k-simplicial if it can be covered by k cliques and denote by G(k) the class of all graphs in which each minimal separator is k-simplicial. We show that for each k >= 0, the class G(k) is closed under induced minors, and we use this to show that the MAXIMUM WEIGHT STABLE SET problem can be solved in polynomial time for G(k). We also give a complete list of minimal forbidden induced minors for G(2). Next, we show that, for k >= 1, every nonnull graph in G(k) has a k-simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques; we deduce that the MAXIMUM WEIGHT CLIQUE problem can be solved in polynomial time for graphs in G(2). Further, we show that, for k >= 3, it is NP-hard to recognize graphs in G(k); the time complexity of recognizing graphs in G(2) 2 is unknown. We also show that the MAXIMUM CLIQUE problem is NP-hard for graphs in G(3). Finally, we prove a decomposition theorem for diamond-free graphs in G(2) (where the diamond is the graph obtained from K-4 by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the VERTEX COLORING and recognition problems for diamond-free graphs in G(2), and improved running times for the MAXIMUM WEIGHT CLIQUE and MAXIMUM WEIGHT STABLE SET problems for this class of graphs.
Název v anglickém jazyce
Bisimplicial separators
Popis výsledku anglicky
A minimal separator of a graph G is a set S subset of V (G) such that there exist vertices a, b is an element of V (G)S with the property that S separates a from b in G, but no proper subset of S does. For an integer k >= 0, we say that a minimal separator is k-simplicial if it can be covered by k cliques and denote by G(k) the class of all graphs in which each minimal separator is k-simplicial. We show that for each k >= 0, the class G(k) is closed under induced minors, and we use this to show that the MAXIMUM WEIGHT STABLE SET problem can be solved in polynomial time for G(k). We also give a complete list of minimal forbidden induced minors for G(2). Next, we show that, for k >= 1, every nonnull graph in G(k) has a k-simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques; we deduce that the MAXIMUM WEIGHT CLIQUE problem can be solved in polynomial time for graphs in G(2). Further, we show that, for k >= 3, it is NP-hard to recognize graphs in G(k); the time complexity of recognizing graphs in G(2) 2 is unknown. We also show that the MAXIMUM CLIQUE problem is NP-hard for graphs in G(3). Finally, we prove a decomposition theorem for diamond-free graphs in G(2) (where the diamond is the graph obtained from K-4 by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the VERTEX COLORING and recognition problems for diamond-free graphs in G(2), and improved running times for the MAXIMUM WEIGHT CLIQUE and MAXIMUM WEIGHT STABLE SET problems for this class of graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
1097-0118
Svazek periodika
106
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
816-842
Kód UT WoS článku
001200260900001
EID výsledku v databázi Scopus
2-s2.0-85190460672