Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bisimplicial separators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493537" target="_blank" >RIV/00216208:11320/24:10493537 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gzI4DpW42T" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gzI4DpW42T</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.23098" target="_blank" >10.1002/jgt.23098</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bisimplicial separators

  • Popis výsledku v původním jazyce

    A minimal separator of a graph G is a set S subset of V (G) such that there exist vertices a, b is an element of V (G)S with the property that S separates a from b in G, but no proper subset of S does. For an integer k &gt;= 0, we say that a minimal separator is k-simplicial if it can be covered by k cliques and denote by G(k) the class of all graphs in which each minimal separator is k-simplicial. We show that for each k &gt;= 0, the class G(k) is closed under induced minors, and we use this to show that the MAXIMUM WEIGHT STABLE SET problem can be solved in polynomial time for G(k). We also give a complete list of minimal forbidden induced minors for G(2). Next, we show that, for k &gt;= 1, every nonnull graph in G(k) has a k-simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques; we deduce that the MAXIMUM WEIGHT CLIQUE problem can be solved in polynomial time for graphs in G(2). Further, we show that, for k &gt;= 3, it is NP-hard to recognize graphs in G(k); the time complexity of recognizing graphs in G(2) 2 is unknown. We also show that the MAXIMUM CLIQUE problem is NP-hard for graphs in G(3). Finally, we prove a decomposition theorem for diamond-free graphs in G(2) (where the diamond is the graph obtained from K-4 by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the VERTEX COLORING and recognition problems for diamond-free graphs in G(2), and improved running times for the MAXIMUM WEIGHT CLIQUE and MAXIMUM WEIGHT STABLE SET problems for this class of graphs.

  • Název v anglickém jazyce

    Bisimplicial separators

  • Popis výsledku anglicky

    A minimal separator of a graph G is a set S subset of V (G) such that there exist vertices a, b is an element of V (G)S with the property that S separates a from b in G, but no proper subset of S does. For an integer k &gt;= 0, we say that a minimal separator is k-simplicial if it can be covered by k cliques and denote by G(k) the class of all graphs in which each minimal separator is k-simplicial. We show that for each k &gt;= 0, the class G(k) is closed under induced minors, and we use this to show that the MAXIMUM WEIGHT STABLE SET problem can be solved in polynomial time for G(k). We also give a complete list of minimal forbidden induced minors for G(2). Next, we show that, for k &gt;= 1, every nonnull graph in G(k) has a k-simplicial vertex, that is, a vertex whose neighborhood is a union of k cliques; we deduce that the MAXIMUM WEIGHT CLIQUE problem can be solved in polynomial time for graphs in G(2). Further, we show that, for k &gt;= 3, it is NP-hard to recognize graphs in G(k); the time complexity of recognizing graphs in G(2) 2 is unknown. We also show that the MAXIMUM CLIQUE problem is NP-hard for graphs in G(3). Finally, we prove a decomposition theorem for diamond-free graphs in G(2) (where the diamond is the graph obtained from K-4 by deleting one edge), and we use this theorem to obtain polynomial-time algorithms for the VERTEX COLORING and recognition problems for diamond-free graphs in G(2), and improved running times for the MAXIMUM WEIGHT CLIQUE and MAXIMUM WEIGHT STABLE SET problems for this class of graphs.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

    1097-0118

  • Svazek periodika

    106

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    816-842

  • Kód UT WoS článku

    001200260900001

  • EID výsledku v databázi Scopus

    2-s2.0-85190460672