Cross-domain corpus selection for cold-start context
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A2UJR98YL" target="_blank" >RIV/00216208:11320/25:2UJR98YL - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199769900&doi=10.1177%2f01655515241263283&partnerID=40&md5=69fe9ff2a06f514aef98c1be5d9bc919" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85199769900&doi=10.1177%2f01655515241263283&partnerID=40&md5=69fe9ff2a06f514aef98c1be5d9bc919</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/01655515241263283" target="_blank" >10.1177/01655515241263283</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cross-domain corpus selection for cold-start context
Popis výsledku v původním jazyce
Sentiment analysis is a powerful tool for monitoring attitudes towards companies, products or services and identifying specific features that drive positive or negative sentiment. However, collecting labelled data for training sentiment analysis models in a specific domain can be challenging in practical applications. One promising solution to this ‘cold-start’ problem is domain adaptation, which leverages labelled data from a related source domain to train a model for the target domain. A critical yet often neglected aspect in prior research is the measurement of similarity between the source and target domains, a factor that greatly impacts the success of domain adaptation. To fill this gap, we propose a novel measure that combines semantic, syntactic and lexical features to assess corpus-level similarity between two domains. Our experimental results demonstrate that our method achieves high precision (0.91) and recall (0.75), outperforming traditional methods. Moreover, our proposed measure can assist new domain products in selecting the most suitable training data set for their sentiment analysis tasks. © The Author(s) 2024.
Název v anglickém jazyce
Cross-domain corpus selection for cold-start context
Popis výsledku anglicky
Sentiment analysis is a powerful tool for monitoring attitudes towards companies, products or services and identifying specific features that drive positive or negative sentiment. However, collecting labelled data for training sentiment analysis models in a specific domain can be challenging in practical applications. One promising solution to this ‘cold-start’ problem is domain adaptation, which leverages labelled data from a related source domain to train a model for the target domain. A critical yet often neglected aspect in prior research is the measurement of similarity between the source and target domains, a factor that greatly impacts the success of domain adaptation. To fill this gap, we propose a novel measure that combines semantic, syntactic and lexical features to assess corpus-level similarity between two domains. Our experimental results demonstrate that our method achieves high precision (0.91) and recall (0.75), outperforming traditional methods. Moreover, our proposed measure can assist new domain products in selecting the most suitable training data set for their sentiment analysis tasks. © The Author(s) 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Information Science
ISSN
0165-5515
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85199769900