Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Speaker Verification Using End-To-End Adversarial Language Adaptation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F19%3APU132986" target="_blank" >RIV/00216305:26230/19:PU132986 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/8683616" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8683616</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speaker Verification Using End-To-End Adversarial Language Adaptation

  • Popis výsledku v původním jazyce

    In this paper we investigate the use of adversarial domain adaptation for addressing the problem of language mismatch between speaker recognition corpora. In the context of speaker verification, adversarial domain adaptation methods aim at minimizing certain divergences between the distribution that the utterance-level features follow (i.e. speaker embeddings) when drawn from source and target domains (i.e. languages), while preserving their capacity in recognizing speakers. Neural architectures for extracting utterancelevel representations enable us to apply adversarial adaptation methods in an end-to-end fashion and train the network jointly with the standard cross-entropy loss. We examine several configurations, such as the use of (pseudo-)labels on the target domain as well as domain labels in the feature extractor, and we demonstrate the effectiveness of our method on the challenging NIST SRE16 and SRE18 benchmarks.

  • Název v anglickém jazyce

    Speaker Verification Using End-To-End Adversarial Language Adaptation

  • Popis výsledku anglicky

    In this paper we investigate the use of adversarial domain adaptation for addressing the problem of language mismatch between speaker recognition corpora. In the context of speaker verification, adversarial domain adaptation methods aim at minimizing certain divergences between the distribution that the utterance-level features follow (i.e. speaker embeddings) when drawn from source and target domains (i.e. languages), while preserving their capacity in recognizing speakers. Neural architectures for extracting utterancelevel representations enable us to apply adversarial adaptation methods in an end-to-end fashion and train the network jointly with the standard cross-entropy loss. We examine several configurations, such as the use of (pseudo-)labels on the target domain as well as domain labels in the feature extractor, and we demonstrate the effectiveness of our method on the challenging NIST SRE16 and SRE18 benchmarks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-23870Y" target="_blank" >GJ17-23870Y: Zvýšení spolehlivosti v automatickém rozpoznávání řečníka</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of ICASSP 2019

  • ISBN

    978-1-5386-4658-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    6006-6010

  • Název nakladatele

    IEEE Signal Processing Society

  • Místo vydání

    Brighton

  • Místo konání akce

    Brighton

  • Datum konání akce

    12. 5. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000482554006047