Exploring the Robustness of Task-oriented Dialogue Systems for Colloquial German Varieties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A4NWUYUBW" target="_blank" >RIV/00216208:11320/25:4NWUYUBW - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189928163&partnerID=40&md5=a91d3dfa7ab3a32f6a6ef40c631b530c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189928163&partnerID=40&md5=a91d3dfa7ab3a32f6a6ef40c631b530c</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring the Robustness of Task-oriented Dialogue Systems for Colloquial German Varieties
Popis výsledku v původním jazyce
Mainstream cross-lingual task-oriented dialogue (ToD) systems leverage the transfer learning paradigm by training a joint model for intent recognition and slot-filling in English and applying it, zero-shot, to other languages. We address a gap in prior research, which often overlooked the transfer to lower-resource colloquial varieties due to limited test data. Inspired by prior work on English varieties, we craft and manually evaluate perturbation rules that transform German sentences into colloquial forms and use them to synthesize test sets in four ToD datasets. Our perturbation rules cover 18 distinct language phenomena, enabling us to explore the impact of each perturbation on slot and intent performance. Using these new datasets, we conduct an experimental evaluation across six different transformers. Here, we demonstrate that when applied to colloquial varieties, ToD systems maintain their intent recognition performance, losing 6% (4.62 percentage points) in accuracy on average. However, they exhibit a significant drop in slot detection, with a decrease of 31% (21 percentage points) in slot F1 score. Our findings are further supported by a transfer experiment from Standard American English to synthetic Urban African American Vernacular English. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
Exploring the Robustness of Task-oriented Dialogue Systems for Colloquial German Varieties
Popis výsledku anglicky
Mainstream cross-lingual task-oriented dialogue (ToD) systems leverage the transfer learning paradigm by training a joint model for intent recognition and slot-filling in English and applying it, zero-shot, to other languages. We address a gap in prior research, which often overlooked the transfer to lower-resource colloquial varieties due to limited test data. Inspired by prior work on English varieties, we craft and manually evaluate perturbation rules that transform German sentences into colloquial forms and use them to synthesize test sets in four ToD datasets. Our perturbation rules cover 18 distinct language phenomena, enabling us to explore the impact of each perturbation on slot and intent performance. Using these new datasets, we conduct an experimental evaluation across six different transformers. Here, we demonstrate that when applied to colloquial varieties, ToD systems maintain their intent recognition performance, losing 6% (4.62 percentage points) in accuracy on average. However, they exhibit a significant drop in slot detection, with a decrease of 31% (21 percentage points) in slot F1 score. Our findings are further supported by a transfer experiment from Standard American English to synthetic Urban African American Vernacular English. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EACL - Conf. European Chapter Assoc. Comput. Linguist., Proc. Conf.
ISBN
979-889176088-2
ISSN
—
e-ISSN
—
Počet stran výsledku
24
Strana od-do
445-468
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
St. Julian's
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—