DEMUX: Data-efficient Multilingual Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3A8CLD4YKS" target="_blank" >RIV/00216208:11320/25:8CLD4YKS - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200029020&partnerID=40&md5=b6a4c04f2d55b99b851622a9b69c58d1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200029020&partnerID=40&md5=b6a4c04f2d55b99b851622a9b69c58d1</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
DEMUX: Data-efficient Multilingual Learning
Popis výsledku v původním jazyce
Pre-trained multilingual models have enabled deployment of NLP technologies for multiple languages. However, optimally fine-tuning these models under an annotation budget, such that performance on desired target languages is jointly maximized, still remains an open question. In this paper, we introduce DEMUX, a framework that prescribes the exact data-points to label from vast amounts of unlabelled multilingual data, having unknown degrees of overlap with the target set. Unlike most prior works, our end-to-end framework is language-agnostic, accounts for model representations, and supports multilingual target configurations. Our active learning strategies rely upon distance and uncertainty measures to select task-specific neighbors that are most informative to label, given a model. DEMUX outperforms strong baselines in 84% of the test cases, in the zero-shot setting of disjoint source and target language sets (including multilingual target pools), across three models and four tasks. Notably, in low-budget settings (5-100 examples), we observe gains of up to 8-11 F1 points. Our code is released here. © 2024 Association for Computational Linguistics.
Název v anglickém jazyce
DEMUX: Data-efficient Multilingual Learning
Popis výsledku anglicky
Pre-trained multilingual models have enabled deployment of NLP technologies for multiple languages. However, optimally fine-tuning these models under an annotation budget, such that performance on desired target languages is jointly maximized, still remains an open question. In this paper, we introduce DEMUX, a framework that prescribes the exact data-points to label from vast amounts of unlabelled multilingual data, having unknown degrees of overlap with the target set. Unlike most prior works, our end-to-end framework is language-agnostic, accounts for model representations, and supports multilingual target configurations. Our active learning strategies rely upon distance and uncertainty measures to select task-specific neighbors that are most informative to label, given a model. DEMUX outperforms strong baselines in 84% of the test cases, in the zero-shot setting of disjoint source and target language sets (including multilingual target pools), across three models and four tasks. Notably, in low-budget settings (5-100 examples), we observe gains of up to 8-11 F1 points. Our code is released here. © 2024 Association for Computational Linguistics.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. Conf. North American Chapter Assoc. Comput. Linguist.: Hum. Lang. Technol., NAACL
ISBN
979-889176114-8
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
7416-7429
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Mexico City
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—