Retrieval and Sorting of Scientific Documents Based on Stacked Embedding and Hybrid Attention Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AFJ9LD8EX" target="_blank" >RIV/00216208:11320/25:FJ9LD8EX - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205027088&doi=10.1109%2fIJCNN60899.2024.10650167&partnerID=40&md5=3e8135cb0ef64c463c11d5477335a0d4" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85205027088&doi=10.1109%2fIJCNN60899.2024.10650167&partnerID=40&md5=3e8135cb0ef64c463c11d5477335a0d4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN60899.2024.10650167" target="_blank" >10.1109/IJCNN60899.2024.10650167</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retrieval and Sorting of Scientific Documents Based on Stacked Embedding and Hybrid Attention Model
Popis výsledku v původním jazyce
Making full use of mathematical formulas and their contextual information is crucial for enhancing the performance of scientific literature retrieval models, where mathematical formulas serve as core elements. The existing methods inadequately use formula structure and contextual information in situations involving mathematical formulas, and ignore the part-of-speech features contained in the context. A two stage scientific document retrieval method, based on stacked embedding and hybrid attention fusion part-of-speech features, was proposed in this paper. Initially, MathML in documents is used to learn the structural and semantic information of mathematical formulas, facilitating scientific document retrieval focused on mathematical expression. Subsequently, the document context is extracted, the context's part-of-speech features are introduced into the model through stacked embeddings, and a hybrid attention mechanism is used to learn the dependency between part-of-speech and context, features are then generated to improve the rationality of retrieval result ranking. Experiments were performed on the NTCIR-12 dataset in which we expanded with Chinese literature. The mAP@10 is 0.865 and NDCG@10 is 0.863 respectively. © 2024 IEEE.
Název v anglickém jazyce
Retrieval and Sorting of Scientific Documents Based on Stacked Embedding and Hybrid Attention Model
Popis výsledku anglicky
Making full use of mathematical formulas and their contextual information is crucial for enhancing the performance of scientific literature retrieval models, where mathematical formulas serve as core elements. The existing methods inadequately use formula structure and contextual information in situations involving mathematical formulas, and ignore the part-of-speech features contained in the context. A two stage scientific document retrieval method, based on stacked embedding and hybrid attention fusion part-of-speech features, was proposed in this paper. Initially, MathML in documents is used to learn the structural and semantic information of mathematical formulas, facilitating scientific document retrieval focused on mathematical expression. Subsequently, the document context is extracted, the context's part-of-speech features are introduced into the model through stacked embeddings, and a hybrid attention mechanism is used to learn the dependency between part-of-speech and context, features are then generated to improve the rationality of retrieval result ranking. Experiments were performed on the NTCIR-12 dataset in which we expanded with Chinese literature. The mAP@10 is 0.865 and NDCG@10 is 0.863 respectively. © 2024 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc Int Jt Conf Neural Networks
ISBN
979-835035931-2
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
—
Místo konání akce
Yokohama
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—