Mel2Word: A Text-Based Melody Representation for Symbolic Music Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AGBQ5BWEV" target="_blank" >RIV/00216208:11320/25:GBQ5BWEV - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181706077&doi=10.1177%2f20592043231216254&partnerID=40&md5=a566dc80ac89da114c61dc9a6107bea3" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85181706077&doi=10.1177%2f20592043231216254&partnerID=40&md5=a566dc80ac89da114c61dc9a6107bea3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/20592043231216254" target="_blank" >10.1177/20592043231216254</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mel2Word: A Text-Based Melody Representation for Symbolic Music Analysis
Popis výsledku v původním jazyce
The purpose of this research is to present a natural language processing-based approach to symbolic music analysis. We propose Mel2Word, a text-based representation including pitch and rhythm information, and a new natural language processing-based melody segmentation algorithm. We first show how to create a melody dictionary using Byte Pair Encoding (BPE), which finds and merges the most frequent pairs that appear in a collection of melodies in a data-driven manner. The dictionary is then used to tokenize or segment a given melody. Utilizing various symbolic melody datasets, we conduct an exploratory analysis and evaluate the classification performance of melody representation models on the MTC-ANN dataset. A comparison with existing segmentation algorithms is also carried out. The result shows that the proposed model significantly improves classification performance in comparison to various melodic features and several existing segmentation algorithms. © The Author(s) 2024.
Název v anglickém jazyce
Mel2Word: A Text-Based Melody Representation for Symbolic Music Analysis
Popis výsledku anglicky
The purpose of this research is to present a natural language processing-based approach to symbolic music analysis. We propose Mel2Word, a text-based representation including pitch and rhythm information, and a new natural language processing-based melody segmentation algorithm. We first show how to create a melody dictionary using Byte Pair Encoding (BPE), which finds and merges the most frequent pairs that appear in a collection of melodies in a data-driven manner. The dictionary is then used to tokenize or segment a given melody. Utilizing various symbolic melody datasets, we conduct an exploratory analysis and evaluate the classification performance of melody representation models on the MTC-ANN dataset. A comparison with existing segmentation algorithms is also carried out. The result shows that the proposed model significantly improves classification performance in comparison to various melodic features and several existing segmentation algorithms. © The Author(s) 2024.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Music and Science
ISSN
20592043
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85181706077