Towards accurate dependency parsing for Galician with limited resources
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AL39SNLPG" target="_blank" >RIV/00216208:11320/25:L39SNLPG - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206510805&doi=10.26342%2f2024-73-18&partnerID=40&md5=0fa04a9f64eb9d360809cbc16f8c0cb2" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85206510805&doi=10.26342%2f2024-73-18&partnerID=40&md5=0fa04a9f64eb9d360809cbc16f8c0cb2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26342/2024-73-18" target="_blank" >10.26342/2024-73-18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards accurate dependency parsing for Galician with limited resources
Popis výsledku v původním jazyce
Automatic syntactic parsing is a fundamental aspect within NLP. However, effective parsing tools necessitate extensive and high-quality annotated treebanks for satisfactory performance. Consequently, the parsing quality for low-resource languages such as Galician remains inadequate. In this context, the present study explores several approaches to improve the automatic syntactic analysis of Galician using the UD framework. Through experimental endeavors, we analyze the quality of the model incrementing the size of the initial training corpus by adding data from Galician PUD treebank. Additionally, we explore the benefits of incorporating contextualized vector representations by comparing the use of various BERT models. Lastly, we assess the impact of integrating cross-lingual training data from similar varieties, analyzing the models’ performance across used treebanks. Our findings underscore (1) the positive correlation between augmented training data and enhanced model performance across used treebanks; (2) superior performance of monolingual BERT models compared to their multilingual analogues; (3) improvement of overall model performance across utilized treebanks by incorporation of cross-lingual data. © 2024 Sociedad Española para el Procesamiento del Lenguaje Natural.
Název v anglickém jazyce
Towards accurate dependency parsing for Galician with limited resources
Popis výsledku anglicky
Automatic syntactic parsing is a fundamental aspect within NLP. However, effective parsing tools necessitate extensive and high-quality annotated treebanks for satisfactory performance. Consequently, the parsing quality for low-resource languages such as Galician remains inadequate. In this context, the present study explores several approaches to improve the automatic syntactic analysis of Galician using the UD framework. Through experimental endeavors, we analyze the quality of the model incrementing the size of the initial training corpus by adding data from Galician PUD treebank. Additionally, we explore the benefits of incorporating contextualized vector representations by comparing the use of various BERT models. Lastly, we assess the impact of integrating cross-lingual training data from similar varieties, analyzing the models’ performance across used treebanks. Our findings underscore (1) the positive correlation between augmented training data and enhanced model performance across used treebanks; (2) superior performance of monolingual BERT models compared to their multilingual analogues; (3) improvement of overall model performance across utilized treebanks by incorporation of cross-lingual data. © 2024 Sociedad Española para el Procesamiento del Lenguaje Natural.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procesamiento del Lenguaje Natural
ISSN
1135-5948
e-ISSN
—
Svazek periodika
2024
Číslo periodika v rámci svazku
73
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
247-257
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85206510805