Leveraging Machine Learning for Crime Intent Detection in Social Media Posts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ALRH2EHKM" target="_blank" >RIV/00216208:11320/25:LRH2EHKM - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177221915&doi=10.1007%2f978-981-99-7587-7_19&partnerID=40&md5=7579256c99f9b27620e90c1ce45b98b1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177221915&doi=10.1007%2f978-981-99-7587-7_19&partnerID=40&md5=7579256c99f9b27620e90c1ce45b98b1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-99-7587-7_19" target="_blank" >10.1007/978-981-99-7587-7_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Leveraging Machine Learning for Crime Intent Detection in Social Media Posts
Popis výsledku v původním jazyce
Detecting crime intent from user-generated content on social media platforms has become increasingly important for law enforcement and crime prevention. This paper presents a comprehensive approach for crime intent detection from user tweets using machine learning techniques. The study utilizes a dataset of about 400,000 tweets and applies data preprocessing, feature selection, and model training with logistic regression, ridge regression classifier, Stochastic Gradient Descent (SGD) classifier, Random Forests, and support vector machine models. Evaluation metrics such as accuracy, precision, recall, and F1 score are employed to assess the models’ performance. The results reveal that the logistic regression model achieves the highest accuracy ratio of 0.981 in detecting crime intent from tweets. This research showcases the effectiveness of machine learning and advanced transformer-based models in leveraging social media data for crime analysis. The findings provide valuable insights into the potential for early detection and monitoring of crime intent using online platforms, contributing to the field of crime prevention and law enforcement. The utilization of machine learning techniques offers new avenues for understanding and analyzing crime-related sentiments expressed by social media users. By accurately detecting crime intent from user-generated content, law enforcement agencies can enhance their proactive measures, monitor public sentiment towards crime, and shape policies and interventions to address public concerns effectively. The research highlights the significance of leveraging social media data for crime detection and emphasizes the potential impact of advanced machine learning models in improving public safety and crime prevention efforts. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Název v anglickém jazyce
Leveraging Machine Learning for Crime Intent Detection in Social Media Posts
Popis výsledku anglicky
Detecting crime intent from user-generated content on social media platforms has become increasingly important for law enforcement and crime prevention. This paper presents a comprehensive approach for crime intent detection from user tweets using machine learning techniques. The study utilizes a dataset of about 400,000 tweets and applies data preprocessing, feature selection, and model training with logistic regression, ridge regression classifier, Stochastic Gradient Descent (SGD) classifier, Random Forests, and support vector machine models. Evaluation metrics such as accuracy, precision, recall, and F1 score are employed to assess the models’ performance. The results reveal that the logistic regression model achieves the highest accuracy ratio of 0.981 in detecting crime intent from tweets. This research showcases the effectiveness of machine learning and advanced transformer-based models in leveraging social media data for crime analysis. The findings provide valuable insights into the potential for early detection and monitoring of crime intent using online platforms, contributing to the field of crime prevention and law enforcement. The utilization of machine learning techniques offers new avenues for understanding and analyzing crime-related sentiments expressed by social media users. By accurately detecting crime intent from user-generated content, law enforcement agencies can enhance their proactive measures, monitor public sentiment towards crime, and shape policies and interventions to address public concerns effectively. The research highlights the significance of leveraging social media data for crime detection and emphasizes the potential impact of advanced machine learning models in improving public safety and crime prevention efforts. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Commun. Comput. Info. Sci.
ISBN
978-981997586-0
ISSN
1865-0929
e-ISSN
—
Počet stran výsledku
13
Strana od-do
224-236
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
—
Místo konání akce
Shanghai
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—