Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Leveraging Machine Learning for Crime Intent Detection in Social Media Posts

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ALRH2EHKM" target="_blank" >RIV/00216208:11320/25:LRH2EHKM - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177221915&doi=10.1007%2f978-981-99-7587-7_19&partnerID=40&md5=7579256c99f9b27620e90c1ce45b98b1" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177221915&doi=10.1007%2f978-981-99-7587-7_19&partnerID=40&md5=7579256c99f9b27620e90c1ce45b98b1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-7587-7_19" target="_blank" >10.1007/978-981-99-7587-7_19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Leveraging Machine Learning for Crime Intent Detection in Social Media Posts

  • Popis výsledku v původním jazyce

    Detecting crime intent from user-generated content on social media platforms has become increasingly important for law enforcement and crime prevention. This paper presents a comprehensive approach for crime intent detection from user tweets using machine learning techniques. The study utilizes a dataset of about 400,000 tweets and applies data preprocessing, feature selection, and model training with logistic regression, ridge regression classifier, Stochastic Gradient Descent (SGD) classifier, Random Forests, and support vector machine models. Evaluation metrics such as accuracy, precision, recall, and F1 score are employed to assess the models’ performance. The results reveal that the logistic regression model achieves the highest accuracy ratio of 0.981 in detecting crime intent from tweets. This research showcases the effectiveness of machine learning and advanced transformer-based models in leveraging social media data for crime analysis. The findings provide valuable insights into the potential for early detection and monitoring of crime intent using online platforms, contributing to the field of crime prevention and law enforcement. The utilization of machine learning techniques offers new avenues for understanding and analyzing crime-related sentiments expressed by social media users. By accurately detecting crime intent from user-generated content, law enforcement agencies can enhance their proactive measures, monitor public sentiment towards crime, and shape policies and interventions to address public concerns effectively. The research highlights the significance of leveraging social media data for crime detection and emphasizes the potential impact of advanced machine learning models in improving public safety and crime prevention efforts. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

  • Název v anglickém jazyce

    Leveraging Machine Learning for Crime Intent Detection in Social Media Posts

  • Popis výsledku anglicky

    Detecting crime intent from user-generated content on social media platforms has become increasingly important for law enforcement and crime prevention. This paper presents a comprehensive approach for crime intent detection from user tweets using machine learning techniques. The study utilizes a dataset of about 400,000 tweets and applies data preprocessing, feature selection, and model training with logistic regression, ridge regression classifier, Stochastic Gradient Descent (SGD) classifier, Random Forests, and support vector machine models. Evaluation metrics such as accuracy, precision, recall, and F1 score are employed to assess the models’ performance. The results reveal that the logistic regression model achieves the highest accuracy ratio of 0.981 in detecting crime intent from tweets. This research showcases the effectiveness of machine learning and advanced transformer-based models in leveraging social media data for crime analysis. The findings provide valuable insights into the potential for early detection and monitoring of crime intent using online platforms, contributing to the field of crime prevention and law enforcement. The utilization of machine learning techniques offers new avenues for understanding and analyzing crime-related sentiments expressed by social media users. By accurately detecting crime intent from user-generated content, law enforcement agencies can enhance their proactive measures, monitor public sentiment towards crime, and shape policies and interventions to address public concerns effectively. The research highlights the significance of leveraging social media data for crime detection and emphasizes the potential impact of advanced machine learning models in improving public safety and crime prevention efforts. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Commun. Comput. Info. Sci.

  • ISBN

    978-981997586-0

  • ISSN

    1865-0929

  • e-ISSN

  • Počet stran výsledku

    13

  • Strana od-do

    224-236

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

  • Místo konání akce

    Shanghai

  • Datum konání akce

    1. 1. 2025

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku