Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10247971" target="_blank" >RIV/61989100:27240/21:10247971 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27350/21:10247971
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210670720307460?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670720307460?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scs.2020.102530" target="_blank" >10.1016/j.scs.2020.102530</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space
Popis výsledku v původním jazyce
Social networks are platforms widely used by travelers who express their opinions about many services like public transport. This paper investigates the value of texts from social networks as a data source for detecting the spatial distribution of problems within a public transit network by geolocating citizens' feelings, and analyzes the effects some factors such as population or income have over that spatial spread, with the goal of developing a more intelligent and sustainable public transit service. For that purpose, Twitter data from the Madrid Metro account is collected over a two-month period. Topics and sentiments are identified from text mining and machine learning algorithms, and mapped to explore spatial and temporal patterns. Lastly, a Geographically Weighted Regression model is used to explore the causality of the spatial distribution of complaining users, by using official data sources as exploratory variables. Results show Twitter users tend to be mid-income workers who reside in peripheral areas and mainly tweet when traveling to workplaces. The main detected problems were punctuality and breakdowns in transfer stations or in central areas, mainly in the early morning of weekdays, and affected by density of points of interest in destination areas.
Název v anglickém jazyce
Social media semantic perceptions on Madrid Metro system: Using Twitter data to link complaints to space
Popis výsledku anglicky
Social networks are platforms widely used by travelers who express their opinions about many services like public transport. This paper investigates the value of texts from social networks as a data source for detecting the spatial distribution of problems within a public transit network by geolocating citizens' feelings, and analyzes the effects some factors such as population or income have over that spatial spread, with the goal of developing a more intelligent and sustainable public transit service. For that purpose, Twitter data from the Madrid Metro account is collected over a two-month period. Topics and sentiments are identified from text mining and machine learning algorithms, and mapped to explore spatial and temporal patterns. Lastly, a Geographically Weighted Regression model is used to explore the causality of the spatial distribution of complaining users, by using official data sources as exploratory variables. Results show Twitter users tend to be mid-income workers who reside in peripheral areas and mainly tweet when traveling to workplaces. The main detected problems were punctuality and breakdowns in transfer stations or in central areas, mainly in the early morning of weekdays, and affected by density of points of interest in destination areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50702 - Urban studies (planning and development)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Cities and Society
ISSN
2210-6707
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
leden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000598812600008
EID výsledku v databázi Scopus
2-s2.0-85092171686