Different Tastes of Entities: Investigating Human Label Variation in Named Entity Annotations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ANFDLZVS8" target="_blank" >RIV/00216208:11320/25:NFDLZVS8 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189941153&partnerID=40&md5=9748a22bef9f828d9e6ff21f9859bed8" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85189941153&partnerID=40&md5=9748a22bef9f828d9e6ff21f9859bed8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Different Tastes of Entities: Investigating Human Label Variation in Named Entity Annotations
Popis výsledku v původním jazyce
Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective. © 2024 UnImplicit 2024 - 3rd Workshop on Understanding Implicit and Underspecified Language, Proceedings of the Workshop. All rights reserved.
Název v anglickém jazyce
Different Tastes of Entities: Investigating Human Label Variation in Named Entity Annotations
Popis výsledku anglicky
Named Entity Recognition (NER) is a key information extraction task with a long-standing tradition. While recent studies address and aim to correct annotation errors via re-labeling efforts, little is known about the sources of human label variation, such as text ambiguity, annotation error, or guideline divergence. This is especially the case for high-quality datasets and beyond English CoNLL03. This paper studies disagreements in expert-annotated named entity datasets for three languages: English, Danish, and Bavarian. We show that text ambiguity and artificial guideline changes are dominant factors for diverse annotations among high-quality revisions. We survey student annotations on a subset of difficult entities and substantiate the feasibility and necessity of manifold annotations for understanding named entity ambiguities from a distributional perspective. © 2024 UnImplicit 2024 - 3rd Workshop on Understanding Implicit and Underspecified Language, Proceedings of the Workshop. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
UnImplicit - Workshop Underst. Implicit Underspecified Lang., Proc. Workshop
ISBN
979-889176083-7
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
73-81
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
St. Julian's
Datum konání akce
1. 1. 2025
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—