NEAT—Named Entities in Archaeological Texts: A semantic approach to term extraction and classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A2UBM235M" target="_blank" >RIV/00216208:11320/23:2UBM235M - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/dsh/advance-article-abstract/doi/10.1093/llc/fqad017/7117781" target="_blank" >https://academic.oup.com/dsh/advance-article-abstract/doi/10.1093/llc/fqad017/7117781</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/llc/fqad017" target="_blank" >10.1093/llc/fqad017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
NEAT—Named Entities in Archaeological Texts: A semantic approach to term extraction and classification
Popis výsledku v původním jazyce
"In this paper, we propose a methodology to annotate texts concerning domain-specific knowledge, to provide a reliable source of data for the task of Named Entity Recognition (NER) in the domain of archaeology for the Italian laguage. This method integrates syntactic and semantic information from several structured sources to annotate entities’ mentions in unstructured texts. Furthermore, we make use of an ontology to label entities with the specific type they refer to. By using a corpus made up of item descriptions from Europeana’s Archaeology Collection, we first test our proposed methodology on a mock dataset composed of 1,000 texts. After several steps of improvements, we use the final process to create a complete dataset composed of 5,000 descriptions. The resulting dataset, Named Entities in Archaeological Texts has a total of 41,002 spans of texts annotated with their domain-specific entity classification according to the CIDOC Conceptual Reference Model."
Název v anglickém jazyce
NEAT—Named Entities in Archaeological Texts: A semantic approach to term extraction and classification
Popis výsledku anglicky
"In this paper, we propose a methodology to annotate texts concerning domain-specific knowledge, to provide a reliable source of data for the task of Named Entity Recognition (NER) in the domain of archaeology for the Italian laguage. This method integrates syntactic and semantic information from several structured sources to annotate entities’ mentions in unstructured texts. Furthermore, we make use of an ontology to label entities with the specific type they refer to. By using a corpus made up of item descriptions from Europeana’s Archaeology Collection, we first test our proposed methodology on a mock dataset composed of 1,000 texts. After several steps of improvements, we use the final process to create a complete dataset composed of 5,000 descriptions. The resulting dataset, Named Entities in Archaeological Texts has a total of 41,002 spans of texts annotated with their domain-specific entity classification according to the CIDOC Conceptual Reference Model."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Digital Scholarship in the Humanities"
ISSN
2055-7671
e-ISSN
—
Svazek periodika
38
Číslo periodika v rámci svazku
2023-5-24
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
997-1013
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—