Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A low-cost machine learning framework for predicting drug-drug interactions based on fusion of multiple features and a parameter self-tuning strategy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ANXGRD6ZR" target="_blank" >RIV/00216208:11320/25:NXGRD6ZR - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184001406&doi=10.1039%2fd4cp00039k&partnerID=40&md5=2fe68400063d0025603577407a2155dc" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85184001406&doi=10.1039%2fd4cp00039k&partnerID=40&md5=2fe68400063d0025603577407a2155dc</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d4cp00039k" target="_blank" >10.1039/d4cp00039k</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A low-cost machine learning framework for predicting drug-drug interactions based on fusion of multiple features and a parameter self-tuning strategy

  • Popis výsledku v původním jazyce

    Poly-drug therapy is now recognized as a crucial treatment, and the analysis of drug-drug interactions (DDIs) offers substantial theoretical support and guidance for its implementation. Predicting potential DDIs using intelligent algorithms is an emerging approach in pharmacological research. However, the existing supervised models and deep learning-based techniques still have several limitations. This paper proposes a novel DDI analysis and prediction framework called the Multi-View Semi-supervised Graph-based (MVSG) framework, which provides a comprehensive judgment by integrating multiple DDI features and functions without any time-consuming training process. Unlike conventional approaches, MVSG can search for the most suitable similarity (or distance) measurement among DDI data and construct graph structures for each feature. By employing a parameter self-tuning strategy, MVSG fuses multiple graphs according to the contributions of features' information. The actual anticancer drug data are extracted from the authoritative public database for evaluating the effectiveness of our framework, including 904 drugs, 7730 DDI records and 19 types of drug interactions. Validation results indicate that the prediction is more accurate when multiple features are adopted by our framework. In comparison to conventional machine learning techniques, MVSG can achieve higher performance even with less labeled data and without a training process. Finally, MVSG is employed to narrow down the search for potential valuable combinations. © 2024 The Royal Society of Chemistry.

  • Název v anglickém jazyce

    A low-cost machine learning framework for predicting drug-drug interactions based on fusion of multiple features and a parameter self-tuning strategy

  • Popis výsledku anglicky

    Poly-drug therapy is now recognized as a crucial treatment, and the analysis of drug-drug interactions (DDIs) offers substantial theoretical support and guidance for its implementation. Predicting potential DDIs using intelligent algorithms is an emerging approach in pharmacological research. However, the existing supervised models and deep learning-based techniques still have several limitations. This paper proposes a novel DDI analysis and prediction framework called the Multi-View Semi-supervised Graph-based (MVSG) framework, which provides a comprehensive judgment by integrating multiple DDI features and functions without any time-consuming training process. Unlike conventional approaches, MVSG can search for the most suitable similarity (or distance) measurement among DDI data and construct graph structures for each feature. By employing a parameter self-tuning strategy, MVSG fuses multiple graphs according to the contributions of features' information. The actual anticancer drug data are extracted from the authoritative public database for evaluating the effectiveness of our framework, including 904 drugs, 7730 DDI records and 19 types of drug interactions. Validation results indicate that the prediction is more accurate when multiple features are adopted by our framework. In comparison to conventional machine learning techniques, MVSG can achieve higher performance even with less labeled data and without a training process. Finally, MVSG is employed to narrow down the search for potential valuable combinations. © 2024 The Royal Society of Chemistry.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Chemistry Chemical Physics

  • ISSN

    1463-9076

  • e-ISSN

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    6300-6315

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85184001406