Prediction of multiple types of drug interactions based on multi-scale fusion and dual-view fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3AT2VW2EZU" target="_blank" >RIV/00216208:11320/25:T2VW2EZU - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186419602&doi=10.3389%2ffphar.2024.1354540&partnerID=40&md5=9228680c112d426e47b3fd7b5b671c59" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186419602&doi=10.3389%2ffphar.2024.1354540&partnerID=40&md5=9228680c112d426e47b3fd7b5b671c59</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fphar.2024.1354540" target="_blank" >10.3389/fphar.2024.1354540</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Prediction of multiple types of drug interactions based on multi-scale fusion and dual-view fusion
Popis výsledku v původním jazyce
Potential drug-drug interactions (DDI) can lead to adverse drug reactions (ADR), and DDI prediction can help pharmacy researchers detect harmful DDI early. However, existing DDI prediction methods fall short in fully capturing drug information. They typically employ a single-view input, focusing solely on drug features or drug networks. Moreover, they rely exclusively on the final model layer for predictions, overlooking the nuanced information present across various network layers. To address these limitations, we propose a multi-scale dual-view fusion (MSDF) method for DDI prediction. More specifically, MSDF first constructs two views, topological and feature views of drugs, as model inputs. Then a graph convolutional neural network is used to extract the feature representations from each view. On top of that, a multi-scale fusion module integrates information across different graph convolutional layers to create comprehensive drug embeddings. The embeddings from the two views are summed as the final representation for classification. Experiments on two real-world datasets demonstrate that MSDF achieves higher accuracy than state-of-the-art methods, as the dual-view, multi-scale approach better captures drug characteristics. Copyright © 2024 Pan, Lu, Wu, Kang, Huang, Lin and Yang.
Název v anglickém jazyce
Prediction of multiple types of drug interactions based on multi-scale fusion and dual-view fusion
Popis výsledku anglicky
Potential drug-drug interactions (DDI) can lead to adverse drug reactions (ADR), and DDI prediction can help pharmacy researchers detect harmful DDI early. However, existing DDI prediction methods fall short in fully capturing drug information. They typically employ a single-view input, focusing solely on drug features or drug networks. Moreover, they rely exclusively on the final model layer for predictions, overlooking the nuanced information present across various network layers. To address these limitations, we propose a multi-scale dual-view fusion (MSDF) method for DDI prediction. More specifically, MSDF first constructs two views, topological and feature views of drugs, as model inputs. Then a graph convolutional neural network is used to extract the feature representations from each view. On top of that, a multi-scale fusion module integrates information across different graph convolutional layers to create comprehensive drug embeddings. The embeddings from the two views are summed as the final representation for classification. Experiments on two real-world datasets demonstrate that MSDF achieves higher accuracy than state-of-the-art methods, as the dual-view, multi-scale approach better captures drug characteristics. Copyright © 2024 Pan, Lu, Wu, Kang, Huang, Lin and Yang.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Pharmacology
ISSN
1663-9812
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85186419602