Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing Long Text Classification Performance Through Keyword-Based Sentence Selection: A Case Study on Online News Classification for Indonesian GDP Growth-Rate Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ARN4BHU6M" target="_blank" >RIV/00216208:11320/25:RN4BHU6M - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/11904" target="_blank" >https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/11904</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.30598/barekengvol18iss2pp1081-1094" target="_blank" >10.30598/barekengvol18iss2pp1081-1094</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing Long Text Classification Performance Through Keyword-Based Sentence Selection: A Case Study on Online News Classification for Indonesian GDP Growth-Rate Detection

  • Popis výsledku v původním jazyce

    Efficiently managing lengthy textual data, particularly in online news, is crucial for enhancing the performance of long text classification. This study delves into innovative approaches to streamline the Gross Domestic Product (GDP) computation process by harnessing modern data analytics, Natural Language Processing (NLP), and online news sources. Leveraging online news data introduces real-time information, promising to improve the accuracy and timeliness of economic indicators like GDP. However, handling the complexity of extensive textual data poses a challenge, demanding advanced NLP techniques. This research shifts from traditional word-weight-based methods to keyword-based extractive summarization techniques to address this. These tailored approaches ensure that selected sentences align precisely with specific keywords relevant to the research case, such as GDP growth rate detection. The study emphasizes the necessity of adapting summarization methods to capture information in unique research contexts effectively. According to classification results, the implementation of sentence selection successfully demonstrated improved performance in terms of classification accuracy. Specifically, there was an average accuracy increase of 0.0226 for machine learning and 0.0164 for transfer learning models. Additionally, in terms of computational efficiency, sentence selection also accelerates processing time during hyperparameter tuning and fine-tuning, as observed using the same computational resources.

  • Název v anglickém jazyce

    Optimizing Long Text Classification Performance Through Keyword-Based Sentence Selection: A Case Study on Online News Classification for Indonesian GDP Growth-Rate Detection

  • Popis výsledku anglicky

    Efficiently managing lengthy textual data, particularly in online news, is crucial for enhancing the performance of long text classification. This study delves into innovative approaches to streamline the Gross Domestic Product (GDP) computation process by harnessing modern data analytics, Natural Language Processing (NLP), and online news sources. Leveraging online news data introduces real-time information, promising to improve the accuracy and timeliness of economic indicators like GDP. However, handling the complexity of extensive textual data poses a challenge, demanding advanced NLP techniques. This research shifts from traditional word-weight-based methods to keyword-based extractive summarization techniques to address this. These tailored approaches ensure that selected sentences align precisely with specific keywords relevant to the research case, such as GDP growth rate detection. The study emphasizes the necessity of adapting summarization methods to capture information in unique research contexts effectively. According to classification results, the implementation of sentence selection successfully demonstrated improved performance in terms of classification accuracy. Specifically, there was an average accuracy increase of 0.0226 for machine learning and 0.0164 for transfer learning models. Additionally, in terms of computational efficiency, sentence selection also accelerates processing time during hyperparameter tuning and fine-tuning, as observed using the same computational resources.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BAREKENG: Jurnal Ilmu Matematika dan Terapan

  • ISSN

    2615-3017

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1081-1094

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus