Recognition of propaganda techniques in newspaper texts: Fusion of content and style analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F25%3ASJ4IZL2C" target="_blank" >RIV/00216208:11320/25:SJ4IZL2C - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/24:00135846
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/summary/80725160-5a91-43b8-9a0c-c1eadd4658ae-fed151e5/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/80725160-5a91-43b8-9a0c-c1eadd4658ae-fed151e5/relevance/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2024.124085" target="_blank" >10.1016/j.eswa.2024.124085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recognition of propaganda techniques in newspaper texts: Fusion of content and style analysis
Popis výsledku v původním jazyce
Public texts aiming at reader manipulation for propaganda or disinformation purposes pose a significant threat to society. The ability to detect the presence of a specific manipulative technique in a text offers an informed warning to readers and guides them to carefully judge the actual statement. In this article, we address the problem of developing new models capable of analyzing newspaper articles for propagandistic features. We introduce a new large dataset of manipulative techniques obtained via gathering and human annotation of 8,646 newspaper articles in Czech, which represents one of the former Soviet influence area languages. The dataset allows both to train new methods to recognize propaganda and disinformation and offer a general comparable benchmark for the techniques. We evaluate the dataset against selected state-of-the-art machine learning approaches to provide high-performing baselines for detecting seventeen annotated manipulative techniques. We also present thorough measurements of inter-annotator agreements that approximate the difficulty level of each of the attributes. As a new finding, we propose a set of text style analysis features that lean on the assumption that each manipulation leads to a specific style pattern. We show that the style analysis improves the detection results for most of the manipulative techniques. The viability of the approach is also confirmed on the well-known QProp propaganda dataset, providing new state-of-the-art results.
Název v anglickém jazyce
Recognition of propaganda techniques in newspaper texts: Fusion of content and style analysis
Popis výsledku anglicky
Public texts aiming at reader manipulation for propaganda or disinformation purposes pose a significant threat to society. The ability to detect the presence of a specific manipulative technique in a text offers an informed warning to readers and guides them to carefully judge the actual statement. In this article, we address the problem of developing new models capable of analyzing newspaper articles for propagandistic features. We introduce a new large dataset of manipulative techniques obtained via gathering and human annotation of 8,646 newspaper articles in Czech, which represents one of the former Soviet influence area languages. The dataset allows both to train new methods to recognize propaganda and disinformation and offer a general comparable benchmark for the techniques. We evaluate the dataset against selected state-of-the-art machine learning approaches to provide high-performing baselines for detecting seventeen annotated manipulative techniques. We also present thorough measurements of inter-annotator agreements that approximate the difficulty level of each of the attributes. As a new finding, we propose a set of text style analysis features that lean on the assumption that each manipulation leads to a specific style pattern. We show that the style analysis improves the detection results for most of the manipulative techniques. The viability of the approach is also confirmed on the well-known QProp propaganda dataset, providing new state-of-the-art results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023062" target="_blank" >LM2023062: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
—
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERT SYSTEMS WITH APPLICATIONS
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
251
Číslo periodika v rámci svazku
2024-10-01
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
001235661700001
EID výsledku v databázi Scopus
—