Didactical contract and responsiveness to didactical contract: a theoretical framework for enquiry into students' creativity in mathematics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11410%2F13%3A10140067" target="_blank" >RIV/00216208:11410/13:10140067 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11858-013-0496-4" target="_blank" >http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11858-013-0496-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11858-013-0496-4" target="_blank" >10.1007/s11858-013-0496-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Didactical contract and responsiveness to didactical contract: a theoretical framework for enquiry into students' creativity in mathematics
Popis výsledku v původním jazyce
One of the manifestations of learning is the students' ability to come up with original solutions to new problems. This ability is one of the criteria by which the teacher may assess whether the student grasped the taught mathematics. Obviously, a teacher can never teach the ability to invent new solutions (at least not directly): he/she can ask for it, expect it, encourage it, but cannot require it. This is one of the fundamental paradoxes of the whole didactical relationship, which Guy Brousseau (1997) modelled in one of the best known concepts in didactics of mathematics: the didactical contract. The teacher cannot be confident that the student will learn exactly what the teacher intended to teach and hence the student must re-create it on the basisof what he/she already knows. In this paper, the importance and the role of situations affording mathematical creativity (in the sense of production of original solutions to unusual situations) are demonstrated. The authors present an ex
Název v anglickém jazyce
Didactical contract and responsiveness to didactical contract: a theoretical framework for enquiry into students' creativity in mathematics
Popis výsledku anglicky
One of the manifestations of learning is the students' ability to come up with original solutions to new problems. This ability is one of the criteria by which the teacher may assess whether the student grasped the taught mathematics. Obviously, a teacher can never teach the ability to invent new solutions (at least not directly): he/she can ask for it, expect it, encourage it, but cannot require it. This is one of the fundamental paradoxes of the whole didactical relationship, which Guy Brousseau (1997) modelled in one of the best known concepts in didactics of mathematics: the didactical contract. The teacher cannot be confident that the student will learn exactly what the teacher intended to teach and hence the student must re-create it on the basisof what he/she already knows. In this paper, the importance and the role of situations affording mathematical creativity (in the sense of production of original solutions to unusual situations) are demonstrated. The authors present an ex
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AM - Pedagogika a školství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP407%2F12%2F1939" target="_blank" >GAP407/12/1939: Rozvíjení kultury řešení matematických problémů ve školské praxi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZDM - International Journal on Mathematics Education
ISSN
1863-9690
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
13
Strana od-do
281-293
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—