Learning Analytics Dashboard Analysing First-Year Engineering Students
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11410%2F18%3A10380973" target="_blank" >RIV/00216208:11410/18:10380973 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/18:00322753 RIV/68407700:21230/18:00322753 RIV/68407700:21730/18:00322753
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-98572-5_48" target="_blank" >https://doi.org/10.1007/978-3-319-98572-5_48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-98572-5_48" target="_blank" >10.1007/978-3-319-98572-5_48</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Analytics Dashboard Analysing First-Year Engineering Students
Popis výsledku v původním jazyce
Nowadays, the higher education institutions experience the problem of the student drop-out. In response to this problem, universities started employing analytical dashboards and educational data mining methods such as machine learning, to detect students at risk of failing their studies. In this paper, we present interactive web-based Learning Analytics dashboard - Analyst, which has been successfully deployed at Faculty of Mechanical Engineering (FME), Czech Technical University in Prague. The dashboard provides academic teaching staff with the opportunity to analyse student-related data from various sources in multiple ways to identify those, who might have difficulties to complete their degree. For this purpose, multiple analytical dashboard views have been implemented. It includes summary statistic, study progression graph, and credit completion probabilities graph. In addition, users have the option to export all analysis related graphs for the future use. Based on the outcomes provided by the Analyst, the university successfully ran the interventions on the selected at-risk students and significantly increased the retention rate in the first study year. (C) 2018, Springer Nature Switzerland AG.
Název v anglickém jazyce
Learning Analytics Dashboard Analysing First-Year Engineering Students
Popis výsledku anglicky
Nowadays, the higher education institutions experience the problem of the student drop-out. In response to this problem, universities started employing analytical dashboards and educational data mining methods such as machine learning, to detect students at risk of failing their studies. In this paper, we present interactive web-based Learning Analytics dashboard - Analyst, which has been successfully deployed at Faculty of Mechanical Engineering (FME), Czech Technical University in Prague. The dashboard provides academic teaching staff with the opportunity to analyse student-related data from various sources in multiple ways to identify those, who might have difficulties to complete their degree. For this purpose, multiple analytical dashboard views have been implemented. It includes summary statistic, study progression graph, and credit completion probabilities graph. In addition, users have the option to export all analysis related graphs for the future use. Based on the outcomes provided by the Analyst, the university successfully ran the interventions on the selected at-risk students and significantly increased the retention rate in the first study year. (C) 2018, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-04150Y" target="_blank" >GJ18-04150Y: Prediktivní modelování studentova výkonu s využitím výukových zdrojů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-319-98571-8
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
575-578
Název nakladatele
Springer Verlag
Místo vydání
Švýcarsko
Místo konání akce
Leeds, United Kingdom
Datum konání akce
3. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—