Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SHAPES OF DRUMS WITH LOWEST BASE FREQUENCY UNDER NON-ISOTROPIC PERIMETER CONSTRAINTS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F19%3A10403972" target="_blank" >RIV/00216208:11620/19:10403972 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbqEcc6Vd-" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cbqEcc6Vd-</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/7532" target="_blank" >10.1090/tran/7532</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SHAPES OF DRUMS WITH LOWEST BASE FREQUENCY UNDER NON-ISOTROPIC PERIMETER CONSTRAINTS

  • Popis výsledku v původním jazyce

    We study the minimizers of the sum of the principal Dirichlet eigenvalue of the negative Laplacian and the perimeter with respect to a general norm in the class of Jordan domains in the plane. This is equivalent (modulo scaling) to minimizing the said eigenvalue (or the base frequency of a drum of this shape) subject to a hard constraint on the perimeter. We show that, for all norms, a minimizer exists, is unique up to spatial translations, and is convex but not necessarily smooth. We give conditions on the norm that characterize the appearance of facets and corners. We also demonstrate that near minimizers have to be close to the optimal ones in the Hausdorff distance. Our motivation for considering this class of variational problems comes from a study of random walks in random environment interacting through the boundary of their support.

  • Název v anglickém jazyce

    SHAPES OF DRUMS WITH LOWEST BASE FREQUENCY UNDER NON-ISOTROPIC PERIMETER CONSTRAINTS

  • Popis výsledku anglicky

    We study the minimizers of the sum of the principal Dirichlet eigenvalue of the negative Laplacian and the perimeter with respect to a general norm in the class of Jordan domains in the plane. This is equivalent (modulo scaling) to minimizing the said eigenvalue (or the base frequency of a drum of this shape) subject to a hard constraint on the perimeter. We show that, for all norms, a minimizer exists, is unique up to spatial translations, and is convex but not necessarily smooth. We give conditions on the norm that characterize the appearance of facets and corners. We also demonstrate that near minimizers have to be close to the optimal ones in the Hausdorff distance. Our motivation for considering this class of variational problems comes from a study of random walks in random environment interacting through the boundary of their support.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-15238S" target="_blank" >GA16-15238S: Kolektivní chování velkých stochastických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Transactions of the American Mathematical Society

  • ISSN

    0002-9947

  • e-ISSN

  • Svazek periodika

    372

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    71-95

  • Kód UT WoS článku

    000472528700004

  • EID výsledku v databázi Scopus

    2-s2.0-85070291375