Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F24%3A10490426" target="_blank" >RIV/00216208:11620/24:10490426 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10490426
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V7MlwbMwYL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V7MlwbMwYL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/2041-210X.14443" target="_blank" >10.1111/2041-210X.14443</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling
Popis výsledku v původním jazyce
1. To circumvent reporting spurious correlations, species distribution models often explicitly account for spatial autocorrelation, for example by including spatially structured random effects. The validity of statistical inference derived from such models has been tested by simulations using null environmental predictors that do not have any causal dependency with the response. Such null environmental predictors can be obtained by permutations of the original predictors or by simulating spatial structures resembling the original predictors. In such approaches, it is important that the permuted or simulated predictors reflect the nature of spatial variation present in the original predictors. 2. Here we present a novel approach for generating realistic null predictors by a shift-&-rotate (S&R) approach: we extract environmental variables after randomly translating and rotating the sampling area within a window of defined environmental layers. In this way, the null environmental variables have fully realistic spatial variation and covariation, but no relationship to the response variable. We implement the S&R approach to three main R-functions and demonstrate with a simulation study how they can be used to untangle causal versus non-causal relationships within species distribution modelling. 3. These methods allow us to quantify the predictive power attributed within the models due to non-causal correlations generated by the realistic structure of the environmental covariates. In our case study, we identify when a model incorrectly estimates parameter values, yet still has high predictive power due to the structured nature of the predictor variables. 4. The use of null models is imperative in ecological modelling for testing the accuracy of statistical inference in complex ecological systems and the choice of these null models is far from trivial. Here we provide R functions for generating spatially realistic null models to use in species distribution modelling as well as other spatially explicit fields such as landscape genetics.
Název v anglickém jazyce
Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling
Popis výsledku anglicky
1. To circumvent reporting spurious correlations, species distribution models often explicitly account for spatial autocorrelation, for example by including spatially structured random effects. The validity of statistical inference derived from such models has been tested by simulations using null environmental predictors that do not have any causal dependency with the response. Such null environmental predictors can be obtained by permutations of the original predictors or by simulating spatial structures resembling the original predictors. In such approaches, it is important that the permuted or simulated predictors reflect the nature of spatial variation present in the original predictors. 2. Here we present a novel approach for generating realistic null predictors by a shift-&-rotate (S&R) approach: we extract environmental variables after randomly translating and rotating the sampling area within a window of defined environmental layers. In this way, the null environmental variables have fully realistic spatial variation and covariation, but no relationship to the response variable. We implement the S&R approach to three main R-functions and demonstrate with a simulation study how they can be used to untangle causal versus non-causal relationships within species distribution modelling. 3. These methods allow us to quantify the predictive power attributed within the models due to non-causal correlations generated by the realistic structure of the environmental covariates. In our case study, we identify when a model incorrectly estimates parameter values, yet still has high predictive power due to the structured nature of the predictor variables. 4. The use of null models is imperative in ecological modelling for testing the accuracy of statistical inference in complex ecological systems and the choice of these null models is far from trivial. Here we provide R functions for generating spatially realistic null models to use in species distribution modelling as well as other spatially explicit fields such as landscape genetics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-29554X" target="_blank" >GX20-29554X: Rovnovážná teorie dynamiky biologické rozmanitosti - makroekologická perspektiva</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Methods in Ecology and Evolution
ISSN
2041-210X
e-ISSN
2041-2096
Svazek periodika
15
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2331-2342
Kód UT WoS článku
001358340300001
EID výsledku v databázi Scopus
2-s2.0-85208069595