Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11620%2F24%3A10490426" target="_blank" >RIV/00216208:11620/24:10490426 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10490426

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V7MlwbMwYL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=V7MlwbMwYL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/2041-210X.14443" target="_blank" >10.1111/2041-210X.14443</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling

  • Popis výsledku v původním jazyce

    1. To circumvent reporting spurious correlations, species distribution models often explicitly account for spatial autocorrelation, for example by including spatially structured random effects. The validity of statistical inference derived from such models has been tested by simulations using null environmental predictors that do not have any causal dependency with the response. Such null environmental predictors can be obtained by permutations of the original predictors or by simulating spatial structures resembling the original predictors. In such approaches, it is important that the permuted or simulated predictors reflect the nature of spatial variation present in the original predictors. 2. Here we present a novel approach for generating realistic null predictors by a shift-&amp;-rotate (S&amp;R) approach: we extract environmental variables after randomly translating and rotating the sampling area within a window of defined environmental layers. In this way, the null environmental variables have fully realistic spatial variation and covariation, but no relationship to the response variable. We implement the S&amp;R approach to three main R-functions and demonstrate with a simulation study how they can be used to untangle causal versus non-causal relationships within species distribution modelling. 3. These methods allow us to quantify the predictive power attributed within the models due to non-causal correlations generated by the realistic structure of the environmental covariates. In our case study, we identify when a model incorrectly estimates parameter values, yet still has high predictive power due to the structured nature of the predictor variables. 4. The use of null models is imperative in ecological modelling for testing the accuracy of statistical inference in complex ecological systems and the choice of these null models is far from trivial. Here we provide R functions for generating spatially realistic null models to use in species distribution modelling as well as other spatially explicit fields such as landscape genetics.

  • Název v anglickém jazyce

    Generating spatially realistic environmental null models with the shift-&-rotate approach helps evaluate false positives in species distribution modelling

  • Popis výsledku anglicky

    1. To circumvent reporting spurious correlations, species distribution models often explicitly account for spatial autocorrelation, for example by including spatially structured random effects. The validity of statistical inference derived from such models has been tested by simulations using null environmental predictors that do not have any causal dependency with the response. Such null environmental predictors can be obtained by permutations of the original predictors or by simulating spatial structures resembling the original predictors. In such approaches, it is important that the permuted or simulated predictors reflect the nature of spatial variation present in the original predictors. 2. Here we present a novel approach for generating realistic null predictors by a shift-&amp;-rotate (S&amp;R) approach: we extract environmental variables after randomly translating and rotating the sampling area within a window of defined environmental layers. In this way, the null environmental variables have fully realistic spatial variation and covariation, but no relationship to the response variable. We implement the S&amp;R approach to three main R-functions and demonstrate with a simulation study how they can be used to untangle causal versus non-causal relationships within species distribution modelling. 3. These methods allow us to quantify the predictive power attributed within the models due to non-causal correlations generated by the realistic structure of the environmental covariates. In our case study, we identify when a model incorrectly estimates parameter values, yet still has high predictive power due to the structured nature of the predictor variables. 4. The use of null models is imperative in ecological modelling for testing the accuracy of statistical inference in complex ecological systems and the choice of these null models is far from trivial. Here we provide R functions for generating spatially realistic null models to use in species distribution modelling as well as other spatially explicit fields such as landscape genetics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10700 - Other natural sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-29554X" target="_blank" >GX20-29554X: Rovnovážná teorie dynamiky biologické rozmanitosti - makroekologická perspektiva</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Methods in Ecology and Evolution

  • ISSN

    2041-210X

  • e-ISSN

    2041-2096

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    2331-2342

  • Kód UT WoS článku

    001358340300001

  • EID výsledku v databázi Scopus

    2-s2.0-85208069595