Optimal out-of-sample forecast evaluation under stationarity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11640%2F23%3A00577629" target="_blank" >RIV/00216208:11640/23:00577629 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/for.3013" target="_blank" >https://doi.org/10.1002/for.3013</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/for.3013" target="_blank" >10.1002/for.3013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal out-of-sample forecast evaluation under stationarity
Popis výsledku v původním jazyce
It is a common practice to split a time series into an in-sample and pseudo-out-of-sample segments and estimate the out-of-sample loss for a given statistical model by evaluating forecasting performance over the pseudo-out-of-sample segment. We propose an alternative estimator of the out-of-sample loss, which, contrary to the conventional wisdom, utilizes criteria measured both in- and out-of-sample via a carefully constructed system of affine weights. We prove that, provided that the time series is stationary, the proposed estimator is the best linear unbiased estimator of the out-of-sample loss and outperforms the conventional estimator in terms of sampling variability. Application of the optimal estimator to Diebold–Mariano type tests of predictive ability leads to a substantial power gain without increasing finite sample size distortions. An extensive evaluation on real-world time series from the M4 forecasting competition confirms superiority of the proposed estimator and also demonstrates substantial robustness to violations of the underlying assumption of stationarity.
Název v anglickém jazyce
Optimal out-of-sample forecast evaluation under stationarity
Popis výsledku anglicky
It is a common practice to split a time series into an in-sample and pseudo-out-of-sample segments and estimate the out-of-sample loss for a given statistical model by evaluating forecasting performance over the pseudo-out-of-sample segment. We propose an alternative estimator of the out-of-sample loss, which, contrary to the conventional wisdom, utilizes criteria measured both in- and out-of-sample via a carefully constructed system of affine weights. We prove that, provided that the time series is stationary, the proposed estimator is the best linear unbiased estimator of the out-of-sample loss and outperforms the conventional estimator in terms of sampling variability. Application of the optimal estimator to Diebold–Mariano type tests of predictive ability leads to a substantial power gain without increasing finite sample size distortions. An extensive evaluation on real-world time series from the M4 forecasting competition confirms superiority of the proposed estimator and also demonstrates substantial robustness to violations of the underlying assumption of stationarity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Forecasting
ISSN
0277-6693
e-ISSN
1099-131X
Svazek periodika
42
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
31
Strana od-do
2249-2279
Kód UT WoS článku
001038631000001
EID výsledku v databázi Scopus
2-s2.0-85166584585