TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F15%3A00083345" target="_blank" >RIV/00216224:14110/15:00083345 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/sagmb-2014-0093" target="_blank" >http://dx.doi.org/10.1515/sagmb-2014-0093</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/sagmb-2014-0093" target="_blank" >10.1515/sagmb-2014-0093</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists
Popis výsledku v původním jazyce
High-throughput sequencing techniques are increasingly affordable and produce massive amounts of data. Together with other high-throughput technologies, such as microarrays, there are an enormous amount of resources in databases. The collection of thesevaluable data has been routine for more than a decade. Despite different technologies, many experiments share the same goal. For instance, the aims of RNA-seq studies often coincide with those of differential gene expression experiments based on microarrays. As such, it would be logical to utilize all available data. However, there is a lack of biostatistical tools for the integration of results obtained from different technologies. Although diverse technological platforms produce different raw data, one commonality for experiments with the same goal is that all the outcomes can be transformed into a platform-independent data format - rankings - for the same set of items.
Název v anglickém jazyce
TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists
Popis výsledku anglicky
High-throughput sequencing techniques are increasingly affordable and produce massive amounts of data. Together with other high-throughput technologies, such as microarrays, there are an enormous amount of resources in databases. The collection of thesevaluable data has been routine for more than a decade. Despite different technologies, many experiments share the same goal. For instance, the aims of RNA-seq studies often coincide with those of differential gene expression experiments based on microarrays. As such, it would be logical to utilize all available data. However, there is a lack of biostatistical tools for the integration of results obtained from different technologies. Although diverse technological platforms produce different raw data, one commonality for experiments with the same goal is that all the outcomes can be transformed into a platform-independent data format - rankings - for the same set of items.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CE - Biochemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY
ISSN
2194-6302
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
6
Strana od-do
311-316
Kód UT WoS článku
000355417300008
EID výsledku v databázi Scopus
—