Pitfalls in users' evaluation of algorithms for text-based similarity detection in medical education
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F18%3A00104404" target="_blank" >RIV/00216224:14110/18:00104404 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8490018" target="_blank" >https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8490018</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pitfalls in users' evaluation of algorithms for text-based similarity detection in medical education
Popis výsledku v původním jazyce
This paper introduces a user evaluation of several approaches for an automated similarity detection between study materials and curriculum description in the field of medical and healthcare education. Our objective is to present an effective methodology of getting relevant feedback from medical students and teachers. Two various data sets (electronic study materials represented by interactive educational algorithms on the AKUTNE.CZ platform and the curriculum of the General Medicine study programme) are processed. For the purposes of this work, text similarity between two data sets is expressed lexically, i.e. character-based (n-gram) similarity as well as term-based similarity methods are used. We present the comparison of five selected approaches to similarity calculation as well as an objective discussion covering our experience with and pitfalls of user evaluation.
Název v anglickém jazyce
Pitfalls in users' evaluation of algorithms for text-based similarity detection in medical education
Popis výsledku anglicky
This paper introduces a user evaluation of several approaches for an automated similarity detection between study materials and curriculum description in the field of medical and healthcare education. Our objective is to present an effective methodology of getting relevant feedback from medical students and teachers. Two various data sets (electronic study materials represented by interactive educational algorithms on the AKUTNE.CZ platform and the curriculum of the General Medicine study programme) are processed. For the purposes of this work, text similarity between two data sets is expressed lexically, i.e. character-based (n-gram) similarity as well as term-based similarity methods are used. We present the comparison of five selected approaches to similarity calculation as well as an objective discussion covering our experience with and pitfalls of user evaluation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS OF THE 2018 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS)
ISBN
9788394941956
ISSN
2325-0348
e-ISSN
—
Počet stran výsledku
8
Strana od-do
109-116
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Poznan
Datum konání akce
9. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000454652300017