Forecasting extremely high ischemic stroke incidence using meteorological time serie
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F24%3A00137245" target="_blank" >RIV/00216224:14110/24:00137245 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310018" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0310018" target="_blank" >10.1371/journal.pone.0310018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting extremely high ischemic stroke incidence using meteorological time serie
Popis výsledku v původním jazyce
Motivation The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes.Methods Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method.Results For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy.Conclusions The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.
Název v anglickém jazyce
Forecasting extremely high ischemic stroke incidence using meteorological time serie
Popis výsledku anglicky
Motivation The association between weather conditions and stroke incidence has been a subject of interest for several years, yet the findings from various studies remain inconsistent. Additionally, predictive modelling in this context has been infrequent. This study explores the relationship of extremely high ischaemic stroke incidence and meteorological factors within the Slovak population. Furthermore, it aims to construct forecasting models of extremely high number of strokes.Methods Over a five-year period, a total of 52,036 cases of ischemic stroke were documented. Days exhibiting a notable surge in ischemic stroke occurrences (surpassing the 90th percentile of historical records) were identified as extreme cases. These cases were then scrutinized alongside daily meteorological parameters spanning from 2015 to 2019. To create forecasts for the occurrence of these extreme cases one day in advance, three distinct methods were employed: Logistic regression, Random Forest for Time Series, and Croston's method.Results For each of the analyzed stroke centers, the cross-correlations between instances of extremely high stroke numbers and meteorological factors yielded negligible results. Predictive performance achieved by forecasts generated through multivariate logistic regression and Random Forest for time series analysis, which incorporated meteorological data, was on par with that of Croston's method. Notably, Croston's method relies solely on the stroke time series data. All three forecasting methods exhibited limited predictive accuracy.Conclusions The task of predicting days characterized by an exceptionally high number of strokes proved to be challenging across all three explored methods. The inclusion of meteorological parameters did not yield substantive improvements in forecasting accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30210 - Clinical neurology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plos one
ISSN
1932-6203
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
001310339200002
EID výsledku v databázi Scopus
2-s2.0-85203658903