Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Postprocessing of Ensemble Weather Forecast Using Decision Tree-Based Probabilistic Forecasting Methods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652079%3A_____%2F23%3A00570950" target="_blank" >RIV/86652079:_____/23:00570950 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.ametsoc.org/view/journals/wefo/38/1/WAF-D-22-0006.1.xml" target="_blank" >https://journals.ametsoc.org/view/journals/wefo/38/1/WAF-D-22-0006.1.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1175/WAF-D-22-0006.1" target="_blank" >10.1175/WAF-D-22-0006.1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Postprocessing of Ensemble Weather Forecast Using Decision Tree-Based Probabilistic Forecasting Methods

  • Popis výsledku v původním jazyce

    Producing an accurate and calibrated probabilistic forecast has high social and economic value. Systematic errors or biases in the ensemble weather forecast can be corrected by postprocessing models whose development is an urgent challenge. Traditionally, the bias correction is done by employing linear regression models that estimate the conditional probability distribution of the forecast. Although this model framework works well, it is restricted to a prespecified model form that often relies on a limited set of predictors only. Most machine learning (ML) methods can tackle these problems with a point prediction, but only a few of them can be applied effectively in a probabilistic manner. The tree-based ML techniques, namely, natural gradient boosting (NGB), quantile random forests (QRF), and distributional regression forests (DRF), are used to adjust hourly 2-m temperature ensemble prediction at lead times of 1-10 days. The ensemble model output statistics (EMOS) and its boosting version are used as benchmark models. The model forecast is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) for the Czech Republic domain. Two training periods 2015-18 and 2018 only were used to learn the models, and their prediction skill was evaluated in 2019. The results show that the QRF and NGB methods provide the best performance for 1-2-day forecasts, while the EMOS method outperforms other methods for 8-10-day forecasts. Key components to improving short-term forecasting are additional atmospheric/surface state predictors and the 4-yr training sample size. Significance StatementMachine learning methods have great potential and are beginning to be widely applied in meteorology in recent years. A new technique called natural gradient boosting (NGB) has been released and used in this paper to refine the probabilistic forecast of surface temperature. It was found that the NGB has better prediction skills than the traditional ensemble model output statistics in forecasting 1 and 2 days in advance. The NGB has similar prediction skills with lower computational demands compared to other advanced machine learning methods such as the quantile random forests. We showed a path to employ the NGB method in this task, which can be followed for refining other and more challenging meteorological variables such as wind speed or precipitation.

  • Název v anglickém jazyce

    Postprocessing of Ensemble Weather Forecast Using Decision Tree-Based Probabilistic Forecasting Methods

  • Popis výsledku anglicky

    Producing an accurate and calibrated probabilistic forecast has high social and economic value. Systematic errors or biases in the ensemble weather forecast can be corrected by postprocessing models whose development is an urgent challenge. Traditionally, the bias correction is done by employing linear regression models that estimate the conditional probability distribution of the forecast. Although this model framework works well, it is restricted to a prespecified model form that often relies on a limited set of predictors only. Most machine learning (ML) methods can tackle these problems with a point prediction, but only a few of them can be applied effectively in a probabilistic manner. The tree-based ML techniques, namely, natural gradient boosting (NGB), quantile random forests (QRF), and distributional regression forests (DRF), are used to adjust hourly 2-m temperature ensemble prediction at lead times of 1-10 days. The ensemble model output statistics (EMOS) and its boosting version are used as benchmark models. The model forecast is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) for the Czech Republic domain. Two training periods 2015-18 and 2018 only were used to learn the models, and their prediction skill was evaluated in 2019. The results show that the QRF and NGB methods provide the best performance for 1-2-day forecasts, while the EMOS method outperforms other methods for 8-10-day forecasts. Key components to improving short-term forecasting are additional atmospheric/surface state predictors and the 4-yr training sample size. Significance StatementMachine learning methods have great potential and are beginning to be widely applied in meteorology in recent years. A new technique called natural gradient boosting (NGB) has been released and used in this paper to refine the probabilistic forecast of surface temperature. It was found that the NGB has better prediction skills than the traditional ensemble model output statistics in forecasting 1 and 2 days in advance. The NGB has similar prediction skills with lower computational demands compared to other advanced machine learning methods such as the quantile random forests. We showed a path to employ the NGB method in this task, which can be followed for refining other and more challenging meteorological variables such as wind speed or precipitation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000797" target="_blank" >EF16_019/0000797: SustES - Adaptační strategie pro udržitelnost ekosystémových služeb a potravinové bezpečnosti v nepříznivých přírodních podmínkách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Weather and Forecasting

  • ISSN

    0882-8156

  • e-ISSN

    1520-0434

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    69-82

  • Kód UT WoS článku

    000926288000002

  • EID výsledku v databázi Scopus

    2-s2.0-85146146258