Modeling tail-dependence of crypto assets with Extreme Value Theory – Perspectives of Risk Management in Banks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14220%2F22%3A00127831" target="_blank" >RIV/00216224:14220/22:00127831 - isvavai.cz</a>
Výsledek na webu
<a href="https://virtusinterpress.org/Modeling-tail-dependence-of-crypto-assets-with-extreme-value-theory-Perspectives-of-risk-management-in-banks.html" target="_blank" >https://virtusinterpress.org/Modeling-tail-dependence-of-crypto-assets-with-extreme-value-theory-Perspectives-of-risk-management-in-banks.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22495/rgcv12i4p5" target="_blank" >10.22495/rgcv12i4p5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling tail-dependence of crypto assets with Extreme Value Theory – Perspectives of Risk Management in Banks
Popis výsledku v původním jazyce
Cryptocurrencies show some properties that differ from typical financial instruments. For example, dynamic volatility, larger price jumps, and other market participants and their associated characteristics can be observed (Pardalos, Kotsireas, Guo, & Knottenbelt, 2020). Especially high tail risk (Sun, Dedahanov, Shin, & Li, 2021; Corbet, Meegan, Larkin, Lucey, & Yarovaya, 2018; Borri, 2019) leads to the question of whether the methods and procedures established in risk management are suitable for measuring the resulting market risks of cryptos appropriately. Therefore, we examine the risk measurement of Bitcoin, Ethereum, and Litecoin. In addition to the classic methods of market risk measurement, historical simulation, and the variance-covariance approach, we also use the extreme value theory to measure risk. Only the extreme value theory with the peaks-over-threshold method delivers satisfactory backtesting results at a confidence level of 99.9%. In the context of our analysis, the highly volatile market phase from January 2021 was crucial. In this, extreme deflections that have never been observed before in the time series have significantly influenced backtesting. Our paper underlines that critical market phases could not be sufficiently observed from the short time series, leading to adequate backtesting results under the standard market risk measurement. At the same time, the strength of the extreme value theory comes into play here and generates a preferable risk measurement.
Název v anglickém jazyce
Modeling tail-dependence of crypto assets with Extreme Value Theory – Perspectives of Risk Management in Banks
Popis výsledku anglicky
Cryptocurrencies show some properties that differ from typical financial instruments. For example, dynamic volatility, larger price jumps, and other market participants and their associated characteristics can be observed (Pardalos, Kotsireas, Guo, & Knottenbelt, 2020). Especially high tail risk (Sun, Dedahanov, Shin, & Li, 2021; Corbet, Meegan, Larkin, Lucey, & Yarovaya, 2018; Borri, 2019) leads to the question of whether the methods and procedures established in risk management are suitable for measuring the resulting market risks of cryptos appropriately. Therefore, we examine the risk measurement of Bitcoin, Ethereum, and Litecoin. In addition to the classic methods of market risk measurement, historical simulation, and the variance-covariance approach, we also use the extreme value theory to measure risk. Only the extreme value theory with the peaks-over-threshold method delivers satisfactory backtesting results at a confidence level of 99.9%. In the context of our analysis, the highly volatile market phase from January 2021 was crucial. In this, extreme deflections that have never been observed before in the time series have significantly influenced backtesting. Our paper underlines that critical market phases could not be sufficiently observed from the short time series, leading to adequate backtesting results under the standard market risk measurement. At the same time, the strength of the extreme value theory comes into play here and generates a preferable risk measurement.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Risk Governance and Control: Financial Markets and Institutions
ISSN
2077-429X
e-ISSN
2077-4303
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
UA - Ukrajina
Počet stran výsledku
11
Strana od-do
67-77
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—