Oscilační věty pro symplektické diferenční systémy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00020334" target="_blank" >RIV/00216224:14310/07:00020334 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Oscillation theorems for symplectic difference systems
Popis výsledku v původním jazyce
We consider symplectic difference systems involving a spectral parameter, together with the Dirichlet boundary conditions. The main result of the paper is a discrete version of the so-called oscillation theorem which relates the number of finite eigenvalues less than a given number to the number of focal points of the principal solution of the symplectic system. In two recent papers the same problem was treated and an essential ingredient was to establish the concept of the multiplicity of a focal point. But there was still a rather restrictive condition needed, which is eliminated here by using the concept of finite eigenvalues (or zeros) from the theory of matrix pencils.
Název v anglickém jazyce
Oscillation theorems for symplectic difference systems
Popis výsledku anglicky
We consider symplectic difference systems involving a spectral parameter, together with the Dirichlet boundary conditions. The main result of the paper is a discrete version of the so-called oscillation theorem which relates the number of finite eigenvalues less than a given number to the number of focal points of the principal solution of the symplectic system. In two recent papers the same problem was treated and an essential ingredient was to establish the concept of the multiplicity of a focal point. But there was still a rather restrictive condition needed, which is eliminated here by using the concept of finite eigenvalues (or zeros) from the theory of matrix pencils.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F04%2F0580" target="_blank" >GA201/04/0580: Diferenční rovnice a dynamické rovnice na "time scales"</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J. Difference Equ. Appl.
ISSN
1023-6198
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
585-605
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—