Geometrické struktury klasického obecně relativistického fázového prostoru
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00024916" target="_blank" >RIV/00216224:14310/08:00024916 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric structures of the classical general relativistic phase space
Popis výsledku v původním jazyce
This paper is concerned with basic geometric properties of the phase space of a classical general relativistic particle, regarded as the 1st jet space of motions, i.e. as the 1st jet space of timelike 1--dimensional submanifolds of spacetime. This setting allows us to skip constraints. Our main goal is to determine the geometric conditions by which the Lorentz metric and a connection of the phase space yield contact and Jacobi structures. In particular, we specialise these conditions to the cases when the connection of the phase space is generated by the metric and an additional tensor. Indeed, the case generated by the metric and the electromagnetic field is included, as well.
Název v anglickém jazyce
Geometric structures of the classical general relativistic phase space
Popis výsledku anglicky
This paper is concerned with basic geometric properties of the phase space of a classical general relativistic particle, regarded as the 1st jet space of motions, i.e. as the 1st jet space of timelike 1--dimensional submanifolds of spacetime. This setting allows us to skip constraints. Our main goal is to determine the geometric conditions by which the Lorentz metric and a connection of the phase space yield contact and Jacobi structures. In particular, we specialise these conditions to the cases when the connection of the phase space is generated by the metric and an additional tensor. Indeed, the case generated by the metric and the electromagnetic field is included, as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F05%2F0523" target="_blank" >GA201/05/0523: Geometrické struktury na fibrovaných varietách</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Geometrical Methods in Modern Physics
ISSN
0219-8878
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
56
Strana od-do
—
Kód UT WoS článku
000259928300004
EID výsledku v databázi Scopus
—