Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

BIFURCATION ROUTES TO CHAOS IN AN EXTENDED VAN DER POLS EQUATION APPLIED TO ECONOMIC MODELS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00035397" target="_blank" >RIV/00216224:14310/09:00035397 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    BIFURCATION ROUTES TO CHAOS IN AN EXTENDED VAN DER POLS EQUATION APPLIED TO ECONOMIC MODELS

  • Popis výsledku v původním jazyce

    In this paper a 3-dimensional system of autonomous differential equations is studied. It can be interpreted as an idealized macroeconomic model with foreign capital investment or an idealized model of the firm profit. The system has three endogenous variables with only one non-linear term and can be also interpreted as an extended van der Pol's equation. It's shown that this simple system covers several types of bifurcations: both supercritical and subcritical Hopf bifurcation and generalized Hopf bifurcation as well, the limit cycle exhibits period-doubling bifurcation as a route to chaos. Some results are analytical and those connected with chaotic motion are computed numerically with continuation programs Content, Xppaut and Maple. We present conditions for stability of the cycles, hysteresis, explore period doubling and using Poincare mapping show a three period cycle that implies chaos.

  • Název v anglickém jazyce

    BIFURCATION ROUTES TO CHAOS IN AN EXTENDED VAN DER POLS EQUATION APPLIED TO ECONOMIC MODELS

  • Popis výsledku anglicky

    In this paper a 3-dimensional system of autonomous differential equations is studied. It can be interpreted as an idealized macroeconomic model with foreign capital investment or an idealized model of the firm profit. The system has three endogenous variables with only one non-linear term and can be also interpreted as an extended van der Pol's equation. It's shown that this simple system covers several types of bifurcations: both supercritical and subcritical Hopf bifurcation and generalized Hopf bifurcation as well, the limit cycle exhibits period-doubling bifurcation as a route to chaos. Some results are analytical and those connected with chaotic motion are computed numerically with continuation programs Content, Xppaut and Maple. We present conditions for stability of the cycles, hysteresis, explore period doubling and using Poincare mapping show a three period cycle that implies chaos.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Electronic Journal of Differential Equations

  • ISSN

    1072-6691

  • e-ISSN

  • Svazek periodika

    2009

  • Číslo periodika v rámci svazku

    53

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus