Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F10%3A00050680" target="_blank" >RIV/00216224:14310/10:00050680 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/10338.dmlcz/141459" target="_blank" >http://hdl.handle.net/10338.dmlcz/141459</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

  • Popis výsledku v původním jazyce

    We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets ofelements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of circle plus-operation in the order and interval topologies on them.

  • Název v anglickém jazyce

    Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

  • Popis výsledku anglicky

    We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets ofelements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of circle plus-operation in the order and interval topologies on them.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F06%2F0664" target="_blank" >GA201/06/0664: Kategoriální metody teorie struktur</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Kybernetika : The Journal of the Czech Society for Cybernetics and Informatics

  • ISSN

    0023-5954

  • e-ISSN

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    18

  • Strana od-do

    953-970

  • Kód UT WoS článku

    000287421300004

  • EID výsledku v databázi Scopus