State complexity of operations on two-way deterministic finite automata over a unary alphabet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F11%3A00050222" target="_blank" >RIV/00216224:14310/11:00050222 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-642-22600-7_18" target="_blank" >http://dx.doi.org/10.1007/978-3-642-22600-7_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-22600-7_18" target="_blank" >10.1007/978-3-642-22600-7_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
State complexity of operations on two-way deterministic finite automata over a unary alphabet
Popis výsledku v původním jazyce
The paper determines the number of states in a two-way deterministic finite automaton (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of the following operations: (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m + n and m + n + 1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m + n and 2m + n + 4 states; (iii) Kleene star of an n-state 2DFA, (g(n) + O(n))^2 states, where g(n) = e^(sqrt(n.ln(n))(1 + o(1)))is the maximum value of lcm(p1,...,pk) for p1 +...+ pk <= n, known as Landau?s function; (iv) k-th power of an n-state 2DFA, between (k - 1)g(n) - k and k.(g(n) + n) states; (v) concatenation of an m-state and an n-state 2DFAs, e^((1 + o(1)).sqrt((m+ n).ln(m + n))) states.
Název v anglickém jazyce
State complexity of operations on two-way deterministic finite automata over a unary alphabet
Popis výsledku anglicky
The paper determines the number of states in a two-way deterministic finite automaton (2DFA) over a one-letter alphabet sufficient and in the worst case necessary to represent the results of the following operations: (i) intersection of an m-state 2DFA and an n-state 2DFA requires between m + n and m + n + 1 states; (ii) union of an m-state 2DFA and an n-state 2DFA, between m + n and 2m + n + 4 states; (iii) Kleene star of an n-state 2DFA, (g(n) + O(n))^2 states, where g(n) = e^(sqrt(n.ln(n))(1 + o(1)))is the maximum value of lcm(p1,...,pk) for p1 +...+ pk <= n, known as Landau?s function; (iv) k-th power of an n-state 2DFA, between (k - 1)g(n) - k and k.(g(n) + n) states; (v) concatenation of an m-state and an n-state 2DFAs, e^((1 + o(1)).sqrt((m+ n).ln(m + n))) states.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F1313" target="_blank" >GA201/09/1313: Algebraické metody v teorii automatů a formálních jazyků II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Descriptional Complexity of Formal Systems: 13th International Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25-27, 2011. Proceedings
ISBN
978-3-642-22599-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
222-234
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Gießen/Limburg, Germany
Datum konání akce
1. 1. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—