Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Dynamic Effect Algebras with dual operation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00062908" target="_blank" >RIV/00216224:14310/12:00062908 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ma.fme.vutbr.cz/archiv/1_1/79_89.pdf" target="_blank" >http://ma.fme.vutbr.cz/archiv/1_1/79_89.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Dynamic Effect Algebras with dual operation

  • Popis výsledku v původním jazyce

    Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their denition Chajda and Kolařík presented the denition of tense operators for lattice effect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an effect algebra by introducing the notion of a partial dynamic effect algebra. They also gave representation theorems for dynamic effect algebras. We continue to extend their work for partial S-dynamic effect algebras i.e. in the case when tense operators satisfy required conditions also for the dual effect algebraic operation . We show that whenever tense operators are total our stronger notion coincides with their denition. We give also a representation theorem for partial S-dynamic effectalgebras and its version for strict dynamic effect algebras.

  • Název v anglickém jazyce

    A Dynamic Effect Algebras with dual operation

  • Popis výsledku anglicky

    Tense operators for MV-algebras were introduced by Diaconescu and Georgescu. Based on their denition Chajda and Kolařík presented the denition of tense operators for lattice effect algebras. Chajda and Paseka tackled the problem of axiomatizing tense operators on an effect algebra by introducing the notion of a partial dynamic effect algebra. They also gave representation theorems for dynamic effect algebras. We continue to extend their work for partial S-dynamic effect algebras i.e. in the case when tense operators satisfy required conditions also for the dual effect algebraic operation . We show that whenever tense operators are total our stronger notion coincides with their denition. We give also a representation theorem for partial S-dynamic effectalgebras and its version for strict dynamic effect algebras.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraické metody v kvantové logice</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    MATHEMATICS FOR APPLICATIONS

  • ISSN

    1805-3610

  • e-ISSN

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    11

  • Strana od-do

    79-89

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus