ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00063706" target="_blank" >RIV/00216224:14310/12:00063706 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
Popis výsledku v původním jazyce
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show thata generalized effect algebra is representable in the operator generalized effect algebra G(D)(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riecanova and Zajac. Further, any operator generalized effect algebra G(D) (H) possesses an order determining set of generalized states.
Název v anglickém jazyce
ON REALIZATION OF GENERALIZED EFFECT ALGEBRAS
Popis výsledku anglicky
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show thata generalized effect algebra is representable in the operator generalized effect algebra G(D)(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riecanova and Zajac. Further, any operator generalized effect algebra G(D) (H) possesses an order determining set of generalized states.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraické metody v kvantové logice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reports on Mathematical Physics
ISSN
0034-4877
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
375-384
Kód UT WoS článku
000313085600008
EID výsledku v databázi Scopus
—